Programming Guide

Agilent Technologies
E4428C/38C ESG Signal Generators

This guide applies to the following signal generator models:
E4428C ESG Analog Signal Generator
E4438C ESG Vector Signal Generator

Due to our continuing efforts to improve our products through firmware and hardware revisions, signal
generator design and operation may vary from descriptions in this guide. We recommend that you use the
latest revision of this guide to ensure you have up-to-date product information. Compare the print date of this
guide (see bottom of page) with the latest revision, which can be downloaded from the following website:

http://www.agilent.com/find/esg

Agilent Technologies

Manufacturing Part Number: E4400-90505
Printed in USA
August 2005

© Copyright 2001-2005 Agilent Technologies, Inc.

Notice

The material contained in thisdocument is provided “asis’, and is subject to being changed, without notice,
in future editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express
or implied with regard to this manual and to any of the Agilent products to which it pertains, including but
not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not
beliable for errors or for incidental or consegquential damages in connection with the furnishing, use, or
performance of this document or any of the Agilent products to which it pertains. Should Agilent have a
written contract with the User and should any of the contract terms conflict with these terms, the contract
terms shall control.

Questions or Comments about our Documentation?

We welcome any questions or comments you may have about our documentation. Please send us an E-mail
at sources_manuals@am.exch.agilent.com.

Contents

1 Getting Started o 1
Introduction to Remote Operationttt e e 2
L= o= 3
IO LibrariEs . . o 3
Adilent IO Libraries SUIte. e 3
WINAOWS N T .« e e e e e e e 4
Programming Languageot it 6
USING GPIB .ottt 7
1. Instalingthe GPIB Interface Cardttt e e 7

2. Selecting 1/O Librariesfor GPIB oo 9
3. Setting Upthe GPIB INterface oot e e e et e 9
4. Verifying GPIB FUNCionalityo oot e e 10
GPIB Interface TEIMS oot e e e e e e 10
GPIB FUNCLON Statementst e e e 10
USING LAN Lo 16
1. Selecting I/O Librariesfor LAN e 16
2. SettingUpthe LAN Interface.o 16
3. Verifying LAN Functionalityooo e 18
USING VXI-0d oo e e e 20
USINg SOCKELS LAN .ot e e e 21
UsSiNg TeINEt LAN ..o e e e e 22
USING T P o e e 26
USING RS 232 . . oottt 28
1. Selecting I/O Librariesfor RS-232.o e e e e 28
2. Setting Upthe RS-232 Interface. oo 29
3. Verifying RS-232 Functionality e 30
Character Format Parametersot 31

If YouHave Problems. 31
Communicating with the Signal Generator UsingaWeb Browserccovvun... 3R2
B O MBSSagES ottt et 34
Error Message Fileo 34
ErrOr MESSage Ty DS, .« o v ot ottt et e e e e e 35

2. Programming EXamples 37
Using the Programming EXampleso e e 38
Programming Examples Development Environment 38
Running C/C++ Programming EXamples i 39
Running Visual Basic 6.0® Programming Examplesc.ccoiiiiiiiniinennnn. 40

Contents

Running C# Programming EXamplesttt 40
GPIB Programming EXamples.ot e 42
Before Using the EXamplesot e 42
Interface Check using Agilent BASIC oot e e 43
Interface Check Using NI-488.2and C++o e e 44
Interface Check uSiNg VISA and C. oot e e e 45
Local Lockout Using AgIlent BASIC. . ..ottt e e e 46
Local Lockout Using NI-488.2and C++o e 48
QueriesUsing AgIlent BASICot e 49
QueriesUsing NI-488.2and CHt. . ..o e e 51
QueriesUsINg VISA and C.ot e 54
GeneratingaCW Signal UsingVISA and C it e 56
Generating an Externally Applied AC-Coupled FM Signal UsingVISAandC.............. 59
Generating an Internal AC-Coupled FM Signal UsingVISAandC 61
Generating a Step-Swept Signal UsingVISA andC ... 63
Generating a Swept Signal Using VISA and Visual C++.o 65
Saving and Recalling StatesUsing VISA and Ct e 67
Reading the Data Questionable Status Register UsingVISAandC 70
Reading the Service Request Interrupt (SRQ) UsingVISAandC........... ...t 75
LAN Programming EXampleso e 80
Before Using the EXamples oot e e 80
VXI-1LPrograming . .o .v oot e e e e e e e e e e e e e e e 80
Sockets LAN Programming using C oottt e e e 85
Sockets LAN Programming USINGPERL it e 114
Sockets LAN Programming UsSing Javaottt 115
RS-232 Programming EXamples 118
Before Using the EXamples oot 118
Interface Check Using Agilent BASIC e 118
Interface Check UsSing VISA and Co i e 119
QueriesUsing AgIlent BASICt e 121
QueriesUsSINg VISA and C. . ..o e e 122
3. Programming the Status Register System, 125
OV VI BV . et e e e e e e e 126
Status Register Bit ValUESo e 129
Accessing Status Register Information 130
Determining What to MONItOr e 130
DeCiding HOW 10 MONIOr.ottt ettt et e 131

Contents

Status Register SCPI Commandso v vt 133
SEAUS BYTE GIrOUP. . . . ot ettt et et e e e e e e e e 135
SatUS BYte ROGIS O . . o\ttt e 136
Service Request Enable RegISter.ttt 137
SEBEUS GIOUDS .« v oo e et et e ettt e e e e e e e e e e e 138
Standard EVENt SatUS GIOUD . .« .o vttt e et et e et ettt e 139
Standard Operation StAUS GIOUP . .« . vttt ettt et e et e et 141
Baseband Operation StatuUS GrOUD oottt et et et et e e 144
Data Questionable StatUS GrOUP v vttt e ettt ettt e 147
Data Questionable POwer StAtUS GIOUD v e it et et et et 151
Data Questionable Frequency StatuS GroUp . . .« .. v vttt 154
Data Questionable Modulation StatusS GroUP v vt e et 157
Data Questionable Calibration StatuS Group oottt e 160
Data Questionable BERT StatUS GIOUD« v et ittt i e e et e e e 163

4. Creating and Downloading Waveform Files i i 167
L0 Y= = P 168
Waveform Data ReqUIrements oot e 168
Understanding Waveform DataL oo o it e e 170
BItS AN By ESottt 170
LSB and MSB (Bit Order)ttt e e 171
Little Endian and Big Endian (Byte Order) 171
Byt SWaDING . o .o e et e 172
DAC INPUE VaIUEBS o e e 173
2sComplement DataFormatot 176
land Q INtErlEaVING. . . .o\ o vt e e 176
Waveform SITUCIUNE oo e 178
File Header 178
Marker File .. 178
L T = 180
AV oI . . 180
Waveform Phase CONtinuUItyottt e et 181
Phase Discontinuity, Distortion, and Spectral Regrowth, 181
Avoiding Phase DiSCONtiNUItIES. oot e 182
WaVEfOrM M BIMIOTY . . o . et ettt e e e e e e e et e 184
Memory ALTOCATION 185
MEMONY SIZE. . o oottt ettt e e e e e e e 185

Contents

Commands for Downloading and Extracting WaveformData.ccoou... 186
Waveform Data Encryption o 186
File Transfer Methods.o e 187
SCPI Command Line SITUCLUIEot e e e e 187
Commands and File Paths for Downloading and Extracting WaveformData. 188
FTP PrOCRAUIES. . . o ottt e e e e e e e e e e e e 191

Creating Waveform Dataot 193
Code Algorithm 193

Downloading Waveform Dala oo vttt et e e e e 200
Using SIMUlation SOftWare.t e 200
Using Advanced Programming Languages oo vt it 203

Loading, Playing, and Verifying aDownloaded Waveform., 207
Loading aFilefrom Non-Volatile Memory 207
Playing the Waveform. 207
Verifying the Wavelorm o 208

Using the Download UtIItIeS.o e 210

Downloading E443xB Signal Generator Files 211
E443XB DataFOrmal oottt 211
Storage Locations for E443xB ARBfiles.o 211
SCPI COMMENGS. ottt et e e e e e e e e e e e e e e e 213

Programming EXamples. o 214
C++ Programming EXamplesot 214
MATLAB Programming EXampleot 243
Visual Basic Programming EXamples.t 247
HP Basic Programming EXamples 255

Troubleshooting Waveform Files e 265

5. Creating and Downloading User-Data Files. 267

User Bit/Binary File DataDownloadso oo 268
Framed and Unframed Data TYPeS. . . . o oo vttt e e e e e 268
Data ReqUITEMENtSo 269
Data Limitations.ottt e e 270
DataVolatilityo 270
User Files as Data Source for Framed Transmissionooo i 270
Multiple User Files Selected as Data Sources for Different Timeslots 273
DownloadingUser FileDatat e 274
Selecting Downloaded User Filesasthe TransmittedDatat 277
Modulating and Activatingthe Carrier. e 278

vi

Contents

FIR Filter Coefficient DOWNIoadsot e 279
Data ReqUITEMENtS e e 279
Data Limitationsottt e e 279
Downloading FIR Filter CoefficientData.o vt it e 280
Selecting a Downloaded User FIR Filter asthe ActiveFilter. o oot 280

Downloads Directly into Pattern RAM (PRAM)ottt e it 283
Data Limitationsottt e 283
Downloading inList FOrmMat o e 284
Downloading in BIOCK FOrmMat oot e et et et 286
Modulating and Activatingthe Carrier. 288
Viewing the PRAM Waveform o 288

Save and Recall Instrument State Files.o 289
Save and Recall Programming Example i 290

Download User Flatness CorrectionsUsingC++and VISA i, 302

Data Transfer Troubleshooting. oot e e e 307
User FileDownload Problems 307
User FIR Filter Coefficient File Download Problems. oot 309
Direct PRAM Download Problems. oo 310

vii

Contents

viii

1 Getting Started

This chapter provides the following major sections:

“Introduction to Remote Operation” on page 2

“Using GPIB” on page 7

“Using LAN” on page 16

“Using RS-232" on page 28

“Communicating with the Signal Generator Using a Web Browser” on page 32
“Error Messages’ on page 34

Getting Started
Introduction to Remote Operation

Introduction to Remote Operation

ESG signal generators support the following interfaces:

» General Purpose Interface Bus (GPIB)
» Local AreaNetwork (LAN)
* ANSI/EIA232 (RS-232) seria connection

Each of these interfaces, in combination with an /O library and programming language, can be used to
remotely control your signal generator. Figure 1-1 uses the GPIB as an example of the rel ationships between
the interface, 1/O libraries, programming language, and signal generator.

Figure 1-1 Software/Hardware Layers

Programming Language:
C/C++, Visual BASIC, LabView etc.

VISA
. National Instruments
Agdilent VISA VISA
. National Instruments
Agilent SICL NI-488.2 Library
Agilent GPIB NI PCI-GPIB
Interface Card Interface Card

Signal Generator

cedila

2 Chapter 1

Getting Started
Introduction to Remote Operation

Interfaces

GPIB GPIB is used extensively when a dedicated computer is available for remote control of
each instrument or system. Data transfer is fast because the GPIB handles information
in 8-bit bytes. GPIB is physically restricted by the location and distance between the
instrument/system and the computer; cables are limited to an average length of two
meters per device with atotal length of 20 meters.

LAN LAN based communication is supported by the signal generator. Datatransfer isfast as
the LAN handles packets of data. The distance between a computer and the signal
generator is limited to 100 meters (10Base-T). The following protocols can be used to
communicate with the signal generator over the LAN:

¢ VXI-11 (Recommended)

e SocketsLAN

¢ Telephone Network (TELNET)
* FileTransfer Protocol (FTP)

RS-232 RS-232 is a common method used to communicate with asingle instrument; its primary
useisto control printers and external disk drives, and connect to a modem.
Communication over RS-232 is much slower than with GPIB or LAN because datais
sent and received one bit at atime. It also requires that certain parameters, such as baud
rate, be matched on both the computer and signal generator.

I/0 Libraries

An /O library isacollection of functions used by a programming language to send instrument commands
and receive instrument data. Before you can communicate and control the signal generator, you must have
an 1O library installed on your computer. The Agilent 10 libraries are included with your signal generator or
Agilent GPIB interface board, or they can be downloaded from the Agilent website: http:\\www.agilent.com.

NOTE Agilent 1/O libraries support the V X1-11 standard.

Agilent 10 Libraries Suite

The Agilent 10 Libraries Suite replaces earlier versions of the Agilent 1O Libraries (version M and earlier)
and is supported on al platforms except Windows NT. If you are using the Windows NT platform, refer to
the section on “Windows NT” on page 4.

The Agilent 10 Libraries Suite is available on the Automation-Ready CD that is shipped with your signal
generator. The libraries can also be downloaded from the Agilent website: http:\\www.agilent.com. Once the

Chapter 1 3

Getting Started
Introduction to Remote Operation

libraries are loaded, you can use the Agilent Connection Expert, Interactive 1O, or VISA Assistant to
configure and communicate with the signal generator over different 1/0 interfaces. Follow instructionsin the
setup wizard to install the libraries on your computer.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services Setup
menu and enable (turn On) the VX1-11 SCPI service.

Refer to the Agilent 10 Libraries Suite Help documentation for details on the features available with this
software.

Windows NT

You must use Agilent IO Librariesversion M or earlier if you have the Windows NT platform. The libraries
can be downloaded from the Agilent website: http:\\www.agilent.com.

NOTE The following sections are specific to Agilent 10 Librariesversions M and earlier and apply
only to the Windows NT platform.

10 Config Program

After installing the Agilent 10 Libraries version M or earlier, you can configure the interfaces available on
your computer by using the 10 Config program. This program can setup the interfaces that you want to use
to control the signal generator. The following steps set up the interfaces.

NOTE Install GPIB interface boards before running 10 Config.

Run the 10O Config program. The program automatically identifies available interfaces.

Click on the interface type you want to configure such GPIB in the Available Interface Types text box.
Click the Configure button. Set the Default Protocol to AUTO.

Click OK to use the default settings.

a M w NP

Click OK to exit the 10 Config program.

VISA Assistant

Use can use the VISA Assistant, available with the Agilent IO Libraries versions M and earlier, to send
commands to the signal generator. If the interface you want to use does not appear in the VISA Assistant
then you must manually configure the interface. See the Manual Configuration section below. Refer to the

4 Chapter 1

Getting Started
Introduction to Remote Operation

VISA Assistant Help menu and the Agilent VISA User’s Manual (available on Agilent’s website) for more
information.

1
2.
3.
4.

Run the VISA Assistant program.

Click on the interface you want to use for sending commands to the signal generator.
Click the Formatted 1/0O tab.

Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using the viPrintf button.

Manual Configuration

Perform the following steps to manually configure an interface.

1

Run the 10 Config Program.

2. Click on GPIB in the Available Interface Types text box.

w

© © N o g b

Click the Configure button. Set the Default Protocol to AUTO and then Click OK to use the default
settings.

Click on GPIBO in the Configured Interfaces text box.

Click Edit...

Click the Edit VISA Config... button.

Click the Add device button.

Enter the GPIB address of the signal generator.

Click the OK button in this form and all other formsto exit the 10 Config program.

Chapter 1 5

Getting Started
Introduction to Remote Operation

Programming Language

The programming language is used along with Standard Commands for Programming Instructions (SCPI)
and 1/0O library functions to remotely control the signal generator. Common programming languages
include:

CIC++

Agilent BASIC
LabView
Javall

Visual Basic®
C#

Java is a U.S. trademark of Sun Microsystems, Inc.
Visual Basic is a registered trademark of Microsoft Corporation

Chapter 1

Getting Started
Using GPIB

Using GPIB

The GPIB allows instruments to be connected together and controlled by a computer. The GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the |IEEE website, www.ieee.org, for details on these standards.

1. Installing the GPIB Interface Card

A GPIB interface card must be installed in your computer. Two common GPIB interface cards are the
National Instruments (NI) PCI-GPIB and the Agilent GPIB interface cards. Follow the GPIB interface card
instructions for installing and configuring the card in your computer. The following tables provide
information on some of the interface cards available. See the Agilent website, www.agilent.com for details
on GPIB interface cards that are available.

Table 1-1 Agilent GPIB Interface Card for PC-Based Systems
Interface Operating 170 Languages Backplane/B Max 1/0 Buffering
Card System Library us (kB/sec)
Agilent Windows VISA / CIC++, Visual ISA/EISA, 750 Built-in
82341C for 95/98/NT/ SICL Basic, Agilent 16 bit
ISA bus 2000° VEE, Agilent
computers Basic for
Windows
Agilent Windows VISA / C/C++, Visual ISA/EISA, 750 Built-in
82341D 95 SICL Basic, Agilent 16 hit
Plug& Play VEE, Agilent
for PC Basic for
Windows
Agilent Windows VISA / C/C++, Visual PCI 32 hit 750 Built-in
82350A for 95/98/NT/ SICL Basic, Agilent
PCI bus 2000 VEE, Agilent
computers Basic for
Windows

Windows 95, 98, NT, and 2000 are registered trademarks of Microsoft Corporation

Chapter 1 7

Getting Started

Using GPIB
Table 1-2 NI-GPIB Interface Card for PC-Based Systems
Interface Operating I/0 Library Languages Backplane/B Max I/0
Card System us
National Windows VISA CIC++, PCI 32 bit 15
Instrument’s 95/98/2000/ NI1-488.200 Visual BASIC, Mbytes/s
PCI-GPIB ME/NT LabView
Nationa Windows VISA C/C++, PCI 32 bit 1.5
Instrument’s NT NI-488.2 Visual BASIC, Mbytes/s
PCI-GPIB+ LabView
NI-488.2 is a trademark of National Instruments Corporation
Table 1-3 Agilent-GPIB Interface Card for HP-UX Workstations
Interface Operating 170 Library Languages Backplane/B Max I/0 Buffering
Card System us (kB/sec)
Agilent HP-UX 9.x, VISA/SICL ANSI C, EISA 750 Built-in
E2071C HP-UX Agilent VEE,
10.01 Agilent BASIC,
HP-UX
Agilent HP-UX VISA/SICL ANSI C, EISA 750 Built-in
E2071D 10.20 Agilent VEE,
Agilent BASIC,
HP-UX
Agilent HP-UX VISA/SICL ANSI C, PCI 750 Built-in
E2078A 10.20 Agilent VEE,
Agilent BASIC,
HP-UX
8 Chapter 1

Getting Started
Using GPIB

2. Selecting 1/0 Libraries for GPIB

The /O libraries are included with your GPIB interface card. These libraries can also be downloaded from
the National Instruments website or the Agilent website. Refer to “1/0 Libraries’ on page 3 for information
on /O libraries. The following is a discussion on these libraries.

VISA

SICL

NI-488.2

VISA isan /O library used to develop 1/O applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used for
programming the signal generator. The NI-VISAD and Agilent VISA librariesare
similar implementations of VISA and have the same commands, syntax, and functions.
Thedifferencesareinthe lower level 1/0O libraries; NI-488.2 and SICL respectively. Itis
best to use the Agilent VISA library with the Agilent GPIB interface card or NI-VISA

with the NI PCI-GPIB interface card.

Agilent SICL can be used without the VISA overlay. The SICL functions can be called
from a program. However, if this method is used, executable programs will not be
portableto other hardware platforms. For example, aprogram using SICL functionswill
not run on a computer with NI libraries (PCI-GPIB interface card).

NI-488.2 can be used without the VISA overlay. The NI1-488.2 functions can be called
from a program. However, if this method is used, executable programs will not be
portable to other hardware platforms. For example, a program using NI-488.2 functions
will not run on a computer with Agilent SICL (Agilent GPIB interface card).

3. Setting Up the GPIB Interface

1. PressUtility > GPIB/RS-232 LAN > GPIB Address.

2. Usethe numeric keypad, the arrow keys, or rotate the front panel knob to set the desired address.

The signal generator’s GPIB addressis set to 19 at the factory. The acceptable range of addressesis 0
through 30. Once initiaized, the state of the GPIB addressis not affected by asignal generator preset or
by a power cycle. Other instruments on the GPIB cannot use the same address as the signal generator.

3. PressEnter.

4. Connect a GPIB interface cable between the signal generator and the computer. (Refer to Table 1-4 for
cable part numbers.)

Table 1-4 Agilent GPIB Cables
Model 10833A 10833B 10833C 10833D 10833F 10833G
Length 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters

NI-VISA is a registered trademark of National Instruments Corporation

Chapter 1

Getting Started
Using GPIB

4. Verifying GPIB Functionality

Use the VISA Assistant, available with the Agilent 10 Library or the Getting Started Wizard available with
the National Instrument 1/O Library, to verify GPIB functionality. These utility programs allow you to
communicate with the signal generator and verify its operation over the GPIB. Refer to the Help menu
available in each utility for information and instructions on running these programs.

If You Have Problems

1. Verify the signal generator’s address matches that declared in the program (example programsin
Chapter 2 use address 19).

2. Remove all other instruments connected to the GPIB and re-run the program.
3. Verify that the GPIB card’s name or id number matches the GPIB name or id number configured for your
PC.

GPIB Interface Terms

Aninstrument that is part of a GPIB network is categorized as a listener, talker, or controller, depending on
its current function in the network.

listener A listener is adevice capable of receiving data or commands from other instruments.
Several instruments in the GPIB network can be listeners simultaneously.

talker A talker is adevice capable of transmitting data. To avoid confusion, a GPIB system
alows only one device at atime to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners (including itself)
for an information transfer. Only one device at atime can be an active controller.

GPIB Function Statements

Function statements are the basis for GPIB programming and instrument control. These function statements
combined with SCPI provide management and data communication for the GPIB interface and the signal
generator.

This section describes functions used by different 1/O libraries. Refer to the NI1-488.2 Function Reference
Manual for Windows, Agilent Standard Instrument Control Library reference manual, and Microsoft®
Visual C++ 6.0 documentation for more information.

Microsoft is a registered trademark of Microsoft Corporation.

10 Chapter 1

Getting Started
Using GPIB

Abort Function

The Agilent BASIC function ABCRT and the other listed I/O library functions terminate listener/talker
activity on the GPIB and prepare the signal generator to receive a new command from the computer.
Typically, thisisan initialization command used to place the GPIB in a known starting condition.

Table 1-5

Agilent BASIC VISA NI-488.2 Agilent SICL
10 ABORT 7 vi Ter m nat e (parameter i bstop(int ud) | iabort (id)
list)

Agilent BASIC The ABORT function stops all GPIB activity.

VISA Library In VISA, the viTerminate command requests a VISA session to terminate normal
execution of an asynchronous operation. The parameter list describes the session and
jobid.

NI-488.2

Library The NI-488.2 library function aborts any asynchronous read, write, or command

operation that isin progress. The parameter ud is the interface or device descriptor.

SICL The Agilent SICL function aborts any command currently executing with the session
i d. This function is supported with C/C++ on Windows 3.1 and Series 700 HP-UX.

Remote Function

The Agilent BASIC function REMOTE and the other listed 1/0O library functions cause the signal generator to
change from local operation to remote operation. In remote operation, the front panel keys are disabled
except for the Local key and the line power switch. Pressing the Local key on the signal generator front panel
restores manual operation.

Table 1-6
Agilent BASIC VISA NI-488.2 Agilent SICL
10 REMOTE 719 N/A Enabl eRenot e (parameter i renot e (id)
list)

Agilent BASIC The REMOTE 719 function disables the front panel operation of all keys with the
exception of the Local key.

VISA Library The VISA library, at this time, does not have a similar command.

Chapter 1 1

Getting Started
Using GPIB

NI-488.2
Library

SICL

This NI-488.2 library function asserts the Remote Enable (REN) GPIB line. All devices
listed in the parameter list are put into a listen-active state although no indication is
generated by the signal generator. The parameter list describes the interface or device
descriptor.

The Agilent SICL function puts an instrument, identified by thei d parameter, into
remote mode and disables the front panel keys. Pressing the Local key on the signal
generator front panel restores manual operation. The parameter id is the session
identifier.

Local Lockout Function

The Agilent BASIC function LOCAL LOCKQOUT and the other listed 1/0 library functions can be used to
disable the front panel keys including the Local key. With the Local key disabled, only the controller (or a
hard reset of the line power switch) can restore local control.

Table 1-7
Agilent BASIC VISA NI-488.2 Agilent SICL
10 LOCAL LOCKQUT 719 | N/A Set RWLS (parameter igpibllo (id)
list)

Agilent BASIC The LOCAL LOCKQUT function disables all front-panel signal generator keys. Return to
local control can occur only with a hard on/off, when the LOCAL command is sent or if
the Preset key is pressed.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2

Library The NI-488.2 library function places the instrument described in the parameter list in
remote mode by asserting the Remote Enable (REN) GPIB line. The lockout stateis
then set using the Local Lockout (LLO) GPIB message. Local control can be restored
only with the Enablelocal NI1-488.2 routine or hard reset. The parameter list describes
the interface or device descriptor.

SICL The Agilent SICL igpibllo function prevents user access to front panel keys operation.
The function puts an instrument, identified by thei d parameter, into remote mode with
local lockout. The parameter i d is the session identifier and instrument address list.

12 Chapter 1

Local Function

Getting Started
Using GPIB

The Agilent BASIC function LOCAL and the other listed functions cause the signal generator to return to
local control with afully enabled front panel.

Table 1-8
Agilent BASIC VISA NI-488.2 Agilent SICL
10 LOCAL 719 N/A ibloc (int ud) iloc(id)
Agilent BASIC The LOCAL 719 function returns the signal generator to manual operation, allowing
access to the signal generator’s front panel keys.
VISA Library The VISA library, at this time, does not have a similar command.
NI-488.2
Library The NI-488.2 library function placesthe interfacein local mode and allows operation of
the signal generator’s front panel keys. The ud parameter in the parameter list isthe
interface or device descriptor.
SICL The Agilent SICL function putsthe signal generator into Local operation; enabling front

Clear Function

panel key operation. Thei d parameter identifies the session.

The Agilent BASIC function CLEAR and the other listed I/O library functions cause the signal generator to
assume a cleared condition.

Table 1-9
Agilent BASIC VISA NI-488.2 Agilent SICL
10 CLEAR 719 vi O ear (Vi Sessi on i bclr(int ud) iclear (id)
Vi)

Agilent BASIC The CLEAR 719 function causes al pending output-parameter operations to be halted,
the parser (interpreter of programming codes) to reset and prepare for a new
programming code, stops any sweep in progress, and continuous sweep to be turned off.

VISA Library The VISA library usesthe viClear function. Thisfunction performs an | EEE 488.1 clear
of the signal generator.

NI-488.2

Library The NI-488.2 library function sends the GPIB Selected Device Clear (SDC) message to

the device described by ud.

Chapter 1

13

Getting Started

Using GPIB

SICL The Agilent SICL function clears adevice or interface. The function also discards data
in both the read and write formatted 1/O buffers. Thei d parameter identifiesthe
session.

Output Function

The Agilent BASIC 1/0 function QUTPUT and the other listed 1/O library functions put the signal generator
into a listen mode and prepare it to receive ASCI| data, typically SCPlI commands.

Table 1-10

Agilent BASIC VISA NI-488.2 Agilent SICL

10 QUTPUT 719 | vi Printf(paraneter ibwt(paraneter |iprintf (paraneter
list) list) list)

Agilent BASIC The function QUTPUT 719 puts the signal generator into remote mode, makesit a
listener, and prepares it to receive data.

VISA Library The VISA library uses the above function and associated parameter list to output data.
This function formats according to the format string and sends data to the device. The
parameter list describes the session id and data to send.

NI-488.2

Library The NI-488.2 library function addresses the GPIB and writes data to the signal
generator. The parameter list includes the instrument address, session id, and the datato
send.

SICL The Agilent SICL function converts data using the format string. The format string

specifies how the argument is converted before it is output. The function sends the
charactersin the format string directly to the instrument. The parameter list includesthe
instrument address, data buffer to write, and so forth.

Enter Function

The Agilent BASIC function ENTER reads formatted data from the signal generator. Other 1/O libraries use
similar functions to read data from the signal generator.

Table 1-11
Agilent BASIC VISA NI-488.2 Agilent SICL
10 ENTER 719; viScanf (parameter list) | ibrd (parameter list) iscanf (parameter list)

Agilent BASIC Thefunction ENTER 719 putsthe signal generator into remote mode, makes it atalker,
and assigns data or status information to a designated variable.

14 Chapter 1

VISA Library

NI-488.2
Library

SICL

Getting Started
Using GPIB

The VISA library uses the viScanf function and an associated parameter list to receive
data. Thisfunction receives data from the instrument, formats it using the format string,
and stores the data in the argument list. The parameter list includes the session id and
string argument.

The NI-488.2 library function addresses the GPIB, reads data bytes from the signal
generator, and stores the data into a specified buffer. The parameter list includes the
instrument address and session id.

The Agilent SICL function reads formatted data, convertsit, and stores the resultsinto
the argument list. The conversion is done using conversion rules for the format string.
The parameter list includes the instrument address, formatted data to read, and so forth.

Chapter 1

15

Getting Started
Using LAN

Using LAN

The signal generator can be remotely programmed viaa 10Base-T LAN interface and L AN-connected
computer using one of several LAN interface protocols. The LAN allows instruments to be connected
together and controlled by a L AN-based computer. LAN and its associated interface operations are defined
in the |IEEE 802.2 standard. See the | EEE website, www.ieee.org, for details on these standards.

The signal generator supports the following LAN interface protocols:
e VXI-11

* SocketsLAN

» Telephone Network (TELNET)

» File Transfer Protocol (FTP)

VXI-11 and sockets LAN are used for general programming using the LAN interface, TELNET is used for
interactive, one command at atime instrument control, and FTP is for file transfer.

1. Selecting 1/0 Libraries for LAN

The TELNET and FTP protocols do not require 1/O libraries to be installed on your computer. However, to
write programs to control your signal generator, an I/O library must be installed on your computer and the
computer configured for instrument control using the LAN interface.

TheAgilent 10 libraries Suite is available on the Automation-Ready CD which was shipped with your signal
generator. The libraries can also be downloaded from the Agilent website. The following is a discussion on
theselibraries.

Agilent VISA VISA isan I/O library used to develop 1/O applications and instrument drivers that
comply with industry standards. Use the Agilent VISA library for programming the
signal generator over the LAN interface.

SICL Adgilent SICL isalower level library that isinstalled along with Agilent VISA.

2. Setting Up the LAN Interface

For LAN operation, the signal generator must be connected to the LAN, and an IP address must be assigned
to the signal generator either manually or by using DHCP client service. Your system administrator can tell
you which method to use.

NOTE Verify that the signal generator is connected to the LAN using a10Base-T LAN cable.

16 Chapter 1

Getting Started

Using LAN
Manual Configuration
1. Press Utility > GPIB/RS-232 LAN > LAN Setup.
2. Press Hostname.
NOTE The Hostname softkey is only available when LAN Config Manual DHCP is set to Manual.

3. Usethelabeled text softkeys, or numeric keypad, or both to enter the desired hostname.
To erase the current hostname, press Editing Keys > Clear Text.

4. PressEnter.

5. Press LAN Config Manual DHCP to Manual.
Press IP Address and enter a desired address.

Use the left and right arrow keys to move the cursor. Use the up and down arrow keys, front panel knob,
or numeric keypad to enter an IP address. To erase the current |P address, press the Clear Text softkey.

NOTE To remotely access the signal generator from a different LAN subnet, you must also enter
the subnet mask and default gateway. See your system administrator to obtain the
appropriate values.

7. Pressthe Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot) softkey.

This action assigns ahostname and | P address (as well as a gateway and subnet mask, if these have been
configured) to the signal generator. The hostname, |P address, gateway and subnet mask are not affected
by an instrument preset or by a power cycle.

DHCP Configuration

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

NOTE If the DHCP server uses dynamic DNSto link the hostname with the assigned | P address,
the hostname may be used in place of the IP address. Otherwise, the hostname is not usable
and you may skip steps 2 through 4.

2. PressHostname.

NOTE The Hostname softkey is only available when LAN Config Manual DHCP is set to Manual.

Chapter 1 17

Getting Started
Using LAN

3. Usethelabeled text softkeys, or numeric keypad, or both to enter the desired hostname.
To erase the current hostname, press Editing Keys > Clear Text.
4. PressEnter.
5. PressLAN Config Manual DHCP to DHCP.
Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot) softkey.

This action configures the signal generator as a DHCP client. In DHCP mode, the signal generator will
reguest a new P address from the DHCP server upon rebooting. You can return to the LAN Setup menu
after rebooting to determine the assigned | P address.

3. Verifying LAN Functionality

Verify the communications link between the computer and the signal generator remote file server using the
ping utility. Compare your ping response to those described in Table 1-12.

From a UNIX ® workstation, type:
pi ng <hostnane or | P address> 64 10

where <host nane or | P address> isyour instrument’s name or IP address, 64 is the packet size, and
10 isthe number of packets transmitted. Type nan pi ng at the UNIX prompt for details on the ping
command.

From the MS-DOS® Command Prompt or Windows environment, type:
ping -n 10 <hostnane or | P address>

where <host nane or | P address> isyour instrument’s name or |P address and 10 is the number of
echo requests. Type pi ng at the command prompt for details on the ping command.

NOTE In DHCP mode, if the DHCP server uses dynamic DNS to link the hostname with the
assigned | P address, the hostname may be used in place of the IP address. Otherwise, the
hostname is not usable and you must use the | P address to communicate with the signal

generator over the LAN.

UNIX is a registered trademark of the Open Group
MS-DOS is a registered trademark of Microsoft Corporation

18 Chapter 1

Table 1-12

Getting Started
Using LAN

Ping Responses

Normal Response for
UNIX

A normal response to the ping command will be atotal of 9 or 10 packets
received with aminimal average round-trip time. The minimal average will be
different from network to network. LAN traffic will cause the round-trip time
to vary widely.

Normal Response for
DOS or Windows

A normal response to the ping command will be atotal of 9 or 10 packets
received if 10 echo requests were specified.

Error Messages

If error messages appear, then check the command syntax before continuing
with troubleshooting. If the syntax is correct, resolve the error messages using
your network documentation or by consulting your network administrator.

If an unknown host error message appears, try using the |P address instead of
the hostname. Also, verify that the host name and IP address for the signal
generator have been registered by your I'T administrator.

Check that the hostname and | P address are correctly entered in the node
names database. To do this, enter t he nsl ookup <host nanme> command
from the command prompt.

No Response

If there is no response from a ping, no packets were received. Check that the
typed address or hostname matches the | P address or hostname assigned to the
signal generator in the System Utility > GPIB/RS-232 LAN > LAN Setup menu.

Ping each node along the route between your workstation and the signal
generator, starting with your workstation. If a node doesn’t respond, contact
your I T administrator.

If the signal generator still does not respond to ping, you should suspect a
hardware problem.

Intermittent Response

If you received 1 to 8 packets back, there maybe a problem with the network.
In networks with switches and bridges, thefirst few pings may be lost until the
these devices ‘learn’ the location of hosts. Also, because the number of
packets received depends on your network traffic and integrity, the number
might be different for your network. Problems of this nature are best resolved
by your IT department.

Chapter 1

19

Getting Started
Using LAN

Using VXI-11

The signal generator supports the LAN interface protocol described in the VXI-11 standard. VXI-11 isan
instrument control protocol based on Open Network Computing/Remote Procedure Call (ONC/RPC)
interfaces running over TCP/IP. It is intended to provide GBIB capabilities such as SRQ (Service Request),
status byte reading, and DCAS (Device Clear State) over aLAN interface. This protocol isagood choicefor
migrating from GPIB to LAN asit has full Agilent VISA/SICL support. See the VXI website, www.vsi.org,
for more information and details on the specification.

Configuring for VXI-11

The Agilent 1/0 library has a program, I/0O Config, that is used to setup the computer/signal generator
interface for the V X1-11 protocol. Download the latest version of the Agilent 1/0 library from the Agilent
website. Refer to the Agilent 1/O library user manual, documentation, and Help menu for information on
running the 1/0 Config program and configuring the VX1-11 interface.

Usethe /O Config program to configure the LAN client. Once the computer is configured for aLAN client,
you can use the VX1-11 protocol and the VISA library to send SCPlI commands to the signal generator over
the LAN interface. Example programs for this protocol are included in “LAN Programming Examples’ on
page 80 of this programming guide.

NOTE For Agilent I/O library version J.01.0100, the “ Identify devicesat run-time” check box must
be unchecked. Refer to Figure 1-2.

20 Chapter 1

Getting Started

Using LAN
Figure 1-2 Show Devices Form
Show Devices | x| |
: oK
[~ ddentify devices at run-time:
Cancel
Devices present on interface GPIBT:
Add device

Remove device

Auto Add devices

Using Sockets LAN

Sockets LAN is a method used to communicate with the signal generator over the LAN interface using the
Transmission Control Protocol/ Internet Protocol (TCP/IP). A socket is afundamental technology used for
computer networking and allows applications to communicate using standard mechanisms built into
network hardware and operating systems. The method accesses a port on the signal generator from which
bidirectional communication with anetwork computer can be established.

Sockets LAN can be described as an internet address that combines Internet Protocol (1P) with adevice port
number and represents a single connection between two pieces of software. The socket can be accessed
using code libraries packaged with the computer operating system. Two common versions of socket libraries
are the Berkeley Sockets Library for UNIX systems and Winsock for Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is compatible
with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The signal generator is aso
compatible with other standard sockets APIs. The signal generator can be controlled using SCPI commands
that are output to a socket connection established in your program.

Chapter 1 21

Getting Started
Using LAN

Before you can use sockets LAN, you must select the signal generator’s sockets port number to use;

» Standard mode. Available on port 5025. Use this port for simple programming.

* TELNET mode. Thetelnet SCPI service is available on port 5023.

NOTE The signal generator will accept referencesto telnet SCPI service at port 7777 and sockets
SCPI service at port 7778.

An example using sockets LAN is given in Chapter 2 of this programming guide.

Using Telnet LAN

Telnet provides ameans of communicating with the signal generator over the LAN. The Telnet client, run on
aLAN connected computer, will create alogin session on the signal generator. A connection, established
between computer and signal generator, generates a user interface display screen with SCPI > prompts on the
command line.

Using the Telnet protocol to send commands to the signal generator is similar to communicating with the
signal generator over GPIB. You establish a connection with the signal generator and then send or receive
information using SCPI commands. Communication is interactive: one command at atime.

NOTE The Windows 2000 ®operating system uses a command prompt style interface for the
Telnet client. Refer to the Figure 1-5 on page 25 for an example of thisinterface.

Using Telnet and MS-DOS Command Prompt

1. Onyour PC, click Start > Programs > Command Prompt.

2. At the command prompt, typeint el net .

3. Pressthe Enter key. The Telnet display screen will be displayed.

4. Click on the Connect menu then select Remote System. A connection form (Figure 1-3) is displayed.

Connect Form

Windows 2000 is a registered trademark of Microsoft Corporation.

22 Chapter 1

6.
7.
8.

Getting Started
Using LAN

Figure 1-3

Host Name: IInstrument name El

Port: |5l]23 :]

TermType: [¥IIT] -]
Connect | Cancel |

Enter the hostname, port number, and TermType then click Connect.

¢ Host Name-IP address or hostname
* Port-5023
e Term Type-vt100

At the SCPI > prompt, enter SCPI commands. Refer to Figure 1-4 on page 24.
To signal device clear, press Ct r | - Con your keyboard.

Select Exit from the Connect menu and type exi t at the command prompt to end the Telnet session.

Using Telnet On a PC With a Host/Port Setting Menu GUI

1. Onyour PC, click Start > Run.

2. Typet el net then click the OK button. The Telnet connection screen will be displayed.
3.
4

Click on the Connect menu then select Remote System. A connection form is displayed. See Figure 1-3.
Enter the hosthname, port number, and TermType then click Connect.

« Host Name-signal generator’s | P address or hostname
e Port-5023
e Term Type-vt100

At the SCPI > prompt, enter SCPI commands. Refer to Figure 1-4 on page 24.
To signal deviceclear, pressCtrl - C.

Select Exit from the Connect menu to end the Telnet session.

Chapter 1 23

Getting Started
Using LAN

Figure 1-4 Telnet Window

M Telnet - pyipl HEE
Connect Edt Temnal Hep

Agilent Technologies, ES254A SH-USO00O0O0M

Firmware: Mar 28 2001 11:23:18

Hostname: GOA1p

IP : OG0B .A0A .00 600

SCPT> =IDH?

fgilent Technologies, ES25%A, USDOOAO00L, ©.01.00
SCPI> =RST

SCPT> POW:AMPL -10 dhm

SCPI> POW?

-1. 00ROAANAE» B

scr1>

Using Telnet On Windows 2000

1. Onyour PC, click Start > Run.

2. Typet el net intherun text box, then click the OK button. The Telnet connection screen will be
displayed. See Figure 1-5 on page 25.

3. Type open at the prompt and then press the Enter key. The prompt will change to (to).

4. At the (to) prompt, enter the signal generator’s |P address followed by a space and 5023,which isthe
Telnet port associated with the signal generator.

5. At the SCPI > prompt, enter SCPI commands. Refer to commands shown in Figure 1-4 on page 24.
6. To escape from the SCPI> sessiontypeCtrl -].
7. Type quit at the prompt to end the Telnet session.

24 Chapter 1

Getting Started
Using LAN

Figure 1-5 Telnet 2000 Window

_—I C\WINNT\ system32'telnet.exe

Microsoft <R> Windows 2888 (TM> Ue.r.-
Welcome to Microsoft Telnet Client
Telnet Client Build 5.80.992086.1

on 5.88 (Build 2195

Escape Character is *'CIRL+]1’

Microsoft Telnet>

The Standard UNIX Telnet Command

Synopsis
t el net [host [port]]

Description

This command is used to communicate with another host using the Telnet protocol. When the command
t el net isinvoked with host or port arguments, aconnection is opened to the host, and input is sent from
the user to the host.

Options and Parameters

Thecommandt el net operatesin character-at-a-time or line-by-line mode. In line-by-line mode, typed text
is echoed to the screen. When the lineis completed (by pressing the Enter key), thetext lineis sent to host .
In character-at-a-time mode, text is echoed to the screen and sent to host asit istyped. At the UNIX
prompt, type nan t el net to view the options and parameters available with the t el net command.

NOTE If your Telnet connection isin line-by-line mode, there is no local echo. This means you
cannot see the characters you are typing until you press the Enter key. To remedy this,
change your Telnet connection to character-by-character mode. Escape out of Telnet, and at
thet el net > prompt, type mode char . If this does not work, consult your Telnet
program's documentation.

Chapter 1 25

Getting Started
Using LAN

Unix Telnet Example

To connect to the instrument with host name nyl nst r unent and port number 7778, enter the following
command on the command line: t el net nyl nstrument 5023

When you connect to the signal generator, the UNIX window will display awelcome message and a SCPI
command prompt. The instrument is now ready to accept your SCPI commands. As you type SCPI
commands, query results appear on the next line. When you are done, break the Telnet connection using an
escape character. For example, Ct r | -] ,where the control key and the] are pressed at the sametime. The
following example shows Telnet commands:

$ tel net nyinstrument 5023

Trying....

Connected to signal generator

Escape character is ‘"]

Agi | ent Technol ogi es, E44xx SN-US00000001
Fi r nwar e:

Host nane: your instrunent

[P I XXX, XX, XXX. XXX

SCPI >

Using FTP

FTP alows usersto transfer files between the signal generator and any computer connected to the LAN. For
example, you can use FTP to download instrument screen images to a computer. When logged onto the
signal generator with the FTP command, the signal generator’s file structure can be accessed. Figure 1-6
shows the FTP interface and lists the directoriesin the signal generator’s user level directory.

NOTE File accessis limited to the signal generator’s / user directory.

26 Chapter 1

Getting Started
Using LAN

Figure 1-6 FTP Screen

% Command Prompt - ftp 000.000.00.000
=C=> Copyrights 1985-1996 Microsoft Corp.

C:\=fip 000.000.00.000

connected to 000.000.00.000.

220- Agilent Technologies. E8254A SN-LIS00000004
220- Firmware: Mar.28.2001 11:23:18
220- Hostname: 0001p1

2z20- 1P : 000.000.00.000

220- FTP server =Version 1.0> readyw.
User <000.000.00.000:<none=>>:

331 Password required

Password:

230 Successful login

fip= 1s

200 Port command successful.

150 Opening data connection.
BACKUP

BIN

CAL

HTML

5YS

USER

226 Transfer complete.

35 bytes received in 0.00 seconds =35000.00 Kbytes/sec>
fitp> _

ce917a

The following steps outline a sample FTP session from the MS-DOS Command Prompt:

1. OnthePC click Start > Programs > Command Prompt.
2. At the command prompt enter:

ftp<IP address >or <host nane >

At the user name prompt, press enter.
4. At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing help at the command prompt will show you
the FTP commands that are avail able on your system.

Typequi t or bye to end your FTP session.

6. Typeexit toendthecommand prompt session.

Chapter 1 27

Getting Started
Using RS-232

Using RS-232

The RS-232 serial interface can be used to communi cate with the signal generator. The RS-232 connection
is standard on most PCs and can be connected to the signal generator’s rear-panel connector using the cable
described in Table 1-13 on page 29. Many functions provided by GPIB, with the exception of indefinite
blocks, serial polling, GET, non-SCPI remote languages, and remote mode are available using the RS-232
interface.

The serial port sends and receives data one bit at atime, therefore RS-232 communication is slow. The data
transmitted and received isusually in ASCII format with SCPI commands being sent to the signal generator
and ASCI| datareturned.

1. Selecting 1/0 Libraries for RS-232

The /O libraries can be downloaded from the National Instrument website, www.ni.com, or Agilent’s
website, www.agilent.com. The following is adiscussion on these libraries.

Agilent BASIC The Agilent BASIC language has an extensive I/O library that can be used to control the
signal generator over the RS-232 interface. This library has many low level functions
that can be used in BASIC applications to control the signal generator over the RS-232
interface.

VISA VISA isan I/O library used to develop 1/O applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used for
programming the signal generator. The NI-VISA and Agilent VISA librariesare similar
implementations of VISA and have the same commands, syntax, and functions. The
differences are in the lower level /O libraries used to communicate over the RS-232;
NI-488.2 and SICL respectively.

NI-488.2 NI-488.2 1/O libraries can be used to devel op applications for the RS-232 interface. See
National Instrument’s website for information on NI1-488.2.
SICL Adgilent SICL can be used to develop applications for the RS-232 interface. See

Adgilent’s website for information on SICL.

28 Chapter 1

Getting Started
Using RS-232

2. Setting Up the RS-232 Interface

1. Press Utility > GPIB/RS-232 LAN> RS-232 Setup > RS-232 Baud Rate > 9600

Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the baud rate of
your computer or UNIX workstation or adjust the baud rate settings on your computer to match the baud
rate setting of the signal generator.

NOTE The default baud rate for VISA is 9600. This baud rate can be changed with the
“VI_ATTR_ASRL_BAUD” VISA attribute.

2. Press Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Echo Off On until Off is highlighted.

Set the signal generator’s RS-232 echo. Selecting On echoes or returns characters sent to the signal
generator and prints them to the display.

3. Connect an RS-232 cable from the computer’s serial connector to the signal generator’'s AXILLARY
INTERFACE connector. Refer to Table 1-13 for RS-232 cable information.

Table 1-13 RS-232 Serial Interface Cable
Quantity Description Agilent Part Number
1 Serial RS-232 cable 9-pin (male) to 9-pin 8120-6188
(female)
NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wirespins 2, 3, 5, 7,
and 8 may be used.

Chapter 1 29

Getting Started
Using RS-232

3. Verifying RS-232 Functionality

You can use the HyperTerminal program available on your computer to verify the RS-232 interface
functionality. To run the HyperTerminal program, connect the RS-232 cable between the computer and the
signal generator and perform the following steps:

1. OnthePC click Start > Programs > Accessories > HyperTerminal.

2. Select HyperTerminal.

3. Enter aname for the session in the text box and select an icon.

4. Select COM1 (COM2 can be used if COM1 is unavailable).

5. Inthe COM1 (or COM?2, if selected) properties, set the following parameters:

e Bits per second: 9600 must match signal generator’s baud rate; On the signal generator Select
Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Baud Rate > 9600.

o Databits: 8
e Parity: None
e Sopbhits: 1

¢ Flow Control: None

NOTE Flow control, viathe RTS line, is driven by the signal generator. For the purposes of this
verification, the controller (PC) can ignore thisif flow control is set to None. However, to
control the signal generator programmeatically or download filesto the signal generator, you
must enable RTS-CTS (hardware) flow control on the controller. Note that only the RTS
lineis currently used.

6. Go to the HyperTerminal window and select File > Properties

7. Go to Settings > Emulation and select VT100.

8. LeavetheBackscroll buffer lines set to the default value.

9. Go to Settings > ASCII Setup.

10. Check the first two boxes and |eave the other boxes as default values.

Once the connection is established, enter the SCPI command *1 DN? fol | owed by <Ctrl j> inthe
HyperTerminal window. The<Ctrl j >isthe new line character (on the keyboard press the Cntrl key and
the j key simultaneously).

The signal generator should return a string similar to the following, depending on model:

Agilent Technologies <instrument model name and number>, US40000001, C. 02. 00

30 Chapter 1

Getting Started
Using RS-232

Character Format Parameters
The signal generator uses the following character format parameters when communicating via RS-232:

» Character Length: Eight data bits are used for each character, excluding start, stop, and parity bits.
» Parity Enable; Parity is disabled (absent) for each character.
* Stop Bits: One stop hit is included with each character.

If You Have Problems

=

Verify that the baud rate, parity, and stop bits are the same for the computer and signal generator.
2. Verify that the RS-232 cable isidentical to the cable specified in Table 1-13.

3. Verify that the application is using the correct computer COM port and that the RS-232 cable is properly
connected to that port.

4. Verify that the controller’s flow control is set to RTS-CTS.

Chapter 1 31

Getting Started

Communicating with the Signal Generator Using a Web Browser

Communicating with the Signal Generator Using a Web Browser

The Web Server uses a client/server model
where the client is the web browser on your
PC or workstation and the server isthe signal
generator. When you enable the Web Server,
you can access aweb page that resides on the
signal generator.

The web-enabled signal generator web page,
shown at right and page 33, provides general
information on the signal generator, FTP
access to files stored on the signal generator,
and a means to control the instrument using
either aremote front-panel interface or SCPI
commands. The web page also haslinksto
Agilent’s products, manuals, support, and
website. For additional information on
memory catalog access (file storing), refer to
the User’s Guide and “ Waveform Memory”
on page 184 and for FTP, see“Using FTP” on
page 26 and “FTP Procedures’ on page 191.

The Web Server serviceis compatible with
the latest version of the Microsoft© Internet

Explorer web browser.

- Agilent Technologies ESG Series Signal Generator

Welcome to your
Web-Enabled ESG

Agiert ELC JISEE0TIT)
e
101.101.01.101

To operate the signal generator, either click keys, or
enter SCPI commands and click SEND.

\/
2tk 141171140 bl - M 8 it i
The [e Teien T e

= .)_‘lﬂ Dtewch \oltwrrtsn Gvds 3 4 b B - o

m._| i I 0, 101, 10 ey

me | -13000 s
w |

[1010000000

CanL immrs FELP (press “Hel\ Lo mail)

1. Ifitisnot already enabled, turn on the
Web server: Tl b pline o e
a. Press Utility > GPIB/RS-232 LAN > i
LAN Services Setup.
SCPI et zeno |
b. If necessary, press > Web Server On > | o
. . . &l [I e 2
Proceed With Reconfiguration >))
! The results of a SCPI command display on a separate web page titled,
Confirm Change. “SCPI Command Processed.” You can continue using this web page to enter
. SCPI commands or you can return to the front panel web page. If the web
2. Launch the PC or workstation web page does not update, use the Web browser Refresh function.
browser.
Microsoft is a registered trademark of Microsoft Corp.
32 Chapter 1

Getting Started

Communicating with the Signal Generator Using a Web Browser

3. Intheweb browser addressfield, enter the signal generator’s | P (internet protocol) address. For example,
http://101.101.01.101 (where 101.101.01.101 is the signal generator’s | P address).

The IP address can change depending on the LAN configuration (see “Using LAN” on page 16).

4. On the computer’s keyboard, press Enter. The web browser displays the signal generator’s homepage.

Click the Signal Generator Web Control menu button on the left of the page. The front panel web page

displays.

To control the signal generator, either
click the front panel keys or enter SCPI
commands.

7 Agilent Technologies ESG Series Signal Generator

Welcome to your
Web-Enabled ESG

Agiert ELC JISEE0TIT)
a3
101.101.01.101

of By TCPFEARC: NETR

The FTP Access button opens a window to show the folders
containing the signal generator’s memory catalog files.

\J
@ ftp:/M141.121.92.227/USERS - Microsoft Internet Explyrer

File Edit Wiew Favarites Tools Help

@Back = J Lﬁ /__\Jsaarch [} Foldets -

acdtress | fepfj141.121.92.227/USER \
Other{Blaces BN LisT STATE USERFLAT
(8] 141.121.92.227
(5 My Documents
& My Network Places
‘)//\-./* s, gt
. A
b, DEIA"Sam, - P pndt

.

Chapter 1

33

Getting Started
Error Messages

Error Messages

If an error condition occursin the signal generator, it isreported to both the SCPI (remote interface) error
gueue and the front panel display error queue. These two queues are viewed and managed separately; for
information on the front panel display error queue, refer to the User’s Guide.

When accessing error messages using the SCPI (remote interface) error queue, the error numbers and the
<error_description> portions of the error query response are displayed on the host terminal.

Characteristic SCPI Remote Interface Error Queue

Capacity (#errors) 30

Linear, first-in/first-out.
Replaces newest error with: - 350, Queue overfl ow

Viewing Entries Use SCPI query SYSTem ERRor [: NEXT] ?

Overflow Handling

Power up
Clearing the Queue | Send a* CLS command
Read last item in the queue

Unresolved Errors Re-reported after queueis cleared.

When the queue is empty (every error in the queue has been read, or the queueis cleared),
No Errors the following message appears in the queue:
+0, "No error”

Errors that must be resolved. For example, unlock.

Error Message File

A complete list of error messagesis provided in the file errormesages.pdf, on the CD-ROM supplied with
your instrument. In the error message list, an explanation is generally included with each error to further
clarify its meaning. The error messages are listed numerically. In cases where there are multiple listings for
the same error number, the messages are in al phabetical order.

34 Chapter 1

Getting Started
Error Messages

Error Message Types

Events do not generate more than one type of error. For example, an event that generates a query error will
not generate a device-specific, execution, or command error.

Query Errors (—499 to —400) indicate that the instrument’s output queue control has detected a problem
with the message exchange protocol described in IEEE 488.2, Chapter 6. Errorsin this class set the query
error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1). These errors correspond to message
exchange protocol errors described in IEEE 488.2, 6.5. In this case:

» Either an attempt is being made to read data from the output queue when no output is either present or
pending, or

» datain the output queue has been lost.

Device Specific Errors (—399 to —300, 201 to 703, and 800 to 810) indicate that a device operation did not
properly complete, possibly due to an abnormal hardware or firmware condition. These codes are also used
for self-test response errors. Errorsin this class set the device-specific error bit (bit 3) in the event status
register (IEEE 488.2, section 11.5.1).

The <error_message> string for a positive error is not defined by SCPI. A positive error indicates that the
instrument detected an error within the GPIB system, within the instrument’s firmware or hardware, during
the transfer of block data, or during calibration.

Execution Errors (—299 to —200) indicate that an error has been detected by the instrument’s execution
control block. Errorsin this class set the execution error bit (bit 4) in the event status register (IEEE 488.2,
section 11.5.1). In this case:

» Either a<PROGRAM DATA> element following a header was evaluated by the device as outside of its
legal input range or is otherwise inconsistent with the device's capabilities, or

» avalid program message could not be properly executed due to some device condition.

Execution errors are reported after rounding and expression eval uation operations are completed. Rounding
anumeric data element, for example, is not reported as an execution error.

Command Errors(—199 to —100) indicate that the instrument’s parser detected an |EEE 488.2 syntax error.
Errorsin this class set the command error bit (bit 5) in the event status register (IEEE 488.2, section 11.5.1).
In this case:

» Either an IEEE 488.2 syntax error has been detected by the parser (a control-to-device message was
received that isin violation of the | EEE 488.2 standard. Possible violations include a data element that
violates device listening formats or whose type is unacceptabl e to the device.), or

» an unrecognized header was received. These include incorrect device-specific headers and incorrect or
unimplemented |EEE 488.2 common commands.

Chapter 1 35

Getting Started
Error Messages

36 Chapter 1

2 Programming Examples

This chapter provides the following major sections:
» “Using the Programming Examples’ on page 38
» “GPIB Programming Examples’ on page 42
* “LAN Programming Examples’ on page 80
e “RS-232 Programming Examples’ on page 118

37

Programming Examples
Using the Programming Examples

Using the Programming Examples

The programming examples for remote control of the signal generator use the GPIB, LAN, and RS-232
interfaces and demonstrate instrument control using different I/O libraries and programming languages.
Many of the example programsin this chapter are interactive; the user will be prompted to perform certain
actions or verify signal generator operation or functionality. Example programs are written in the following
languages:

e Agilent BASIC

e C/C++

+ Java

 PERL

* Microsoft Visual Basic 6.0
e CH

See Chapter 1 of this programming guide for information on interfaces, 1/O libraries, and programming
languages.

The example programs are also available on the ESG Documentation CD-ROM, allowing you to cut and
paste the examplesinto a text editor.

NOTE The example programs set the signal generator into remote mode; front panel keys, except
the Local key, are disabled. Pressthe Local key to revert to manual operation.

NOTE To update the signal generator’s front panel display so that it reflects remote command
setups, enable the remote display: press Utility > Display > Update in Remote Off On softkey
until On is highlighted or send the SCPI command :DISPlay:REMote ON. For faster test
execution, disable front panel updates.

Programming Examples Development Environment

The C/C++ examples in this guide were written using an |BM-compatible personal computer (PC) with the
following configuration:

« Pentium® processor

Pentium is a U.S. registered trademark of Intel Corporation

38 Chapter 2

Programming Examples
Using the Programming Examples

e Windows NT 4.0 operating system

e C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

» National Instruments PCI- GPIB interface card or Agilent GPIB interface card
« National Instruments VISA Library or Agilent VISA library

e COM1 or COM2 seria port available

* LAN interface card

The Agilent BASIC examples were run on a UNIX 700 Series workstation.

Running C/C++ Programming Examples

To run the example programs written in C/C++ you must include the required files in the Microsoft Visual
C++ 6.0 project.

If you are using the VISA library do the following:

» add thevisa32.lib file to the Resource Files

* add thevisah fileto the Header Files

If you are using the NI-488.2 library do the following:

* add the GPIB-32.0BJfile to the Resource Files
* add the windows.h file to the Header Files
* add the Deci-32.h file to the Header Files

Refer to the National Instrument website for information on the NI-488.2 library and file requirements. For
information on the VISA library see the Agilent website or National Instrument’s website.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services Setup
menu and enable the VXI-11 SCPI service.

Chapter 2 39

Programming Examples
Using the Programming Examples

Running Visual Basic 6.0® Programming Examples

To run the example programs written in Visual Basic 6.0 you must include referencesto the 1O Libraries.
For more information on VISA and 10 libraries, refer to the Agilent VISA User’s Manual, available on
Agilent’swebsite: http://mmw.agilent.com. In the Visual Basic IDE (Integrated Devel opment Environment)
goto Pr oj ect —Ref er ences and place a check mark on the following references:

e Agilent VISA COM Resource Manager 1.0
e VISA COM 1.0 Type Library

NOTE If you want to use VISA functions such as viWrite, then you must add the visa32.bas
module to your Visual Basic project.

The signal generator’s VX1-11 SCPI service must be on before you can run the Download Visual Basic 6.0
programming example.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services Setup
menu and enable (turn On) the VX1-11 SCPI service.

You can start anew Standard EXE project and add the required references. Once the required references are
include, you can copy the example programs into your project and add a command button to For ml that
will call the program.

The example Visual Basic 6.0 programs are available on the ESG Documentation CD-ROM, enabling you to
cut and paste the examplesinto your project.

Running C# Programming Examples

To run the example program written in C# you must have the .NET framework installed on your computer.
You must also have the Agilent 10 Librariesinstalled on your computer. The .NET framework can be
downloaded from the Microsoft website.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services Setup
menu and enable (turn On) the VX1-11 SCPI service.

Visual Basic is a registered trademark of Microsoft corporation

40 Chapter 2

Programming Examples
Using the Programming Examples

1. Copy the State File.csfilein the examplesdirectory to the .NET installation directory where the csc.exe
fileislocated. The example C# program is available on the ESG Documentation CD-ROM

2. Runthe MS-DOS Command Prompt program. Change the directory so that the command prompt
program isin the same directory as the csc.exe and State File programs.

3. Onthecommandline, entercsc State File.cs.

4. Follow the prompts in the program to save and recall signal generator instrument states.

Chapter 2 41

Programming Examples
GPIB Programming Examples

GPIB Programming Examples

“Interface Check using Agilent BASIC” on page 43

» “Interface Check Using NI-488.2 and C++" on page 44

» “Interface Check using VISA and C” on page 45

» “Loca Lockout Using Agilent BASIC” on page 46

e “Local Lockout Using NI-488.2 and C++" on page 48

* “Queries Using Agilent BASIC” on page 49

* “Queries Using NI1-488.2 and C++" on page 51

* “QueriesUsing VISA and C” on page 54

* “Generating aCW Signal Using VISA and C” on page 56

* “Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 59
* “Generating an Internal AC-Coupled FM Signal Using VISA and C” on page 61
* “Generating a Step-Swept Signal Using VISA and C” on page 63

» “Saving and Recalling States Using VISA and C” on page 67

» “Reading the Data Questionable Status Register Using VISA and C” on page 70
» “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 75

Before Using the Examples

If the Agilent GPIB interface card is used, then the Agilent VISA library should be installed along with
Adgilent SICL. If the National Instruments PCI-GPIB interface card is used, the NI-VISA library along with
the NI-488.2 library should be installed. Refer to “2. Selecting /O Libraries for GPIB” on page 9 and the
documentation for your GPIB interface card for details.

NOTE Agilent BASIC addresses the signal generator at 719. The GPIB card is addressed at 7 and
the signal generator at 19. The GPIB address designator for other librariesistypically
GPIBO or GPIB1.

42 Chapter 2

Programming Examples
GPIB Programming Examples

Interface Check using Agilent BASIC

This simple program causes the signal generator to perform an instrument reset. The SCPI command * RST
places the signal generator into a pre-defined state and the remote annunciator (R) appears on the front panel

display.
The following program example is available on the ESG Documentation CD-ROM as basicex1.txt.

10 [k kR ko ko Kk ko ko Kk Kk Kk Kk Kk Kk Kk kR Rk kR kR kR kR kR Rk kR kR kR Rk
20 !

30 I PROGRAM NAME: basi cex1. t xt

40 !

50 ! PROGRAM DESCRI PTION: This programverifies that the GPIB connections and

60 ! interface are functional.

70 !

80 I Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the foll ow ng commands and then
120 I RUN the program

130 !

LAQ I KEE AR R KRR A KRR KRR AR KR KRR R R KA KRR KRR AR R KK R AR R KRR AR R AR XAk
150 !

160 Si g_gen=719 ! Declares a variable to hold the signal generator's address

170 LOCAL Sig_gen ! Places the signal generator into Local node

180 CLEAR Sig_gen ! Cears any pending data |I/O and resets the parser

190 REMOTE 719 I Puts the signal generator into renmpte node

200 CLEAR SCREEN ! Clears the controllers display

210 REMOTE 719

220 QUTPUT Sig_gen;"*RST" | Places the signal generator into a defined state

230 PRI NT "The signal generator should now be in REMOTE."

240 PRI NT

250 PRINT "Verify that the remote [R] annunciator is on. Press the "“Local' key, "
260 PRINT "on the front panel to return the signal generator to local control."

270 PRI NT

Chapter 2 43

Programming Examples
GPIB Programming Examples

280 PRINT "Press RUN to start again."
290 END ! Program ends

Interface Check Using NI-488.2 and C++

This example uses the NI1-488.2 library to verify that the GPIB connections and interface are functional .
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file.

The following program example is available on the ESG Documentation CD-ROM as niex1.cpp.

J] RA R Rk Rk Rk Rk Rk kR kR kR Rk kR kR Rk Rk Rk kR Rk kR Rk Rk Rk Rk Rk Rk Rk Rk Rk ok
/1

/1 PROGRAM NAME: ni ex1.cpp

/1

/1 PROGRAM DESCRI PTI ON: This programverifies that the GPIB connections and

/1 interface are functional.

/1

/1 Connect a GPIB cable fromthe PC GPIB card to the signal generator

/'l Enter the following code into the source .cpp file and execute the program

/1

// khkkkhkkhkkhkkhkhkhkhhkrbhhhhkhkhkhkhkhk kA kA kA kA Ak hkkk k%%

#i ncl ude "stdafx. h"

#i ncl ude <i ostreanv
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"

usi ng namespace std;

int GPl BO= 0; /1 Board handl e
Addr 4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

44 Chapter 2

Programming Examples
GPIB Programming Examples

int sig; /] Declares a device descriptor variable
sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor
ibclr(sig); /1 Sends device clear nessage to signal generator

ibwt(sig, "*RST", 4); /1 Places the signal generator into a defined state

/1 Print data to the output w ndow
cout << "The signal generator should now be in REMOTE. The renote indicator"<<endl

cout <<"annunci ator R should appear on the signal generator display"<<endl
return O

}

Interface Check using VISA and C

This program uses VISA library functions and the C language to communicate with the signal generator.
The program verifies that the GPIB connections and interface are functional. Launch Microsoft Visual C++
6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex1.cpp.

[RR Rk Rk Rk Rk kR kR kR kR Rk kR kR kR Rk kR Rk Rk kR kR Rk Rk Rk kR Rk Rk Rk Rk Rk
/1 PROGRAM NAME: vi saexl. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e programverifies that the GPIB connections and

/1 and interface are functional

/1 Turn signal generator power off then on and then run the program

/1

] R R Kk kK ok ok kK K ok ok kK Kk ok o kK Kk ok o kK R ok ok o kR R ok ok kR ok ok o kR R ok ok R Rk ok R R R ok ok R R R ok ok kR R Rk kK

#i ncl ude <vi sa. h>
#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"

#i ncl ude <stdlib. h>

Chapter 2 45

Programming Examples
GPIB Programming Examples

void main ()

{

Vi Sessi on defaul tRM vi; /'l Declares a variable of type Vi Session

/1 for instrunent conmmunication

Vi Status vi Status = 0;

/1 Opens a session to the GPIB device

/] at address 19
vi St at us=vi OpenDef aul t RM &def aul t RM ;

vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI _NULL, WVI_NULL, &vi);

i f(viStatus){

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");

exit(0);}

viPrintf(vi, "*RST\n"); /1 initializes signal generator
// prints to the output w ndow

printf("The signal generator should now be in REMOTE. The renote
i ndi cator\n");

printf("annunci ator R shoul d appear on the signal generator display\n");

printf("\n");

vi Cl ose(vi); /] cl oses session

vi Cl ose(defaul tRM ; /'l closes default session
}

Local Lockout Using Agilent BASIC

This example demonstrates the Local Lockout function. Local Lockout disables the front panel signal

generator keys.

The following program example is available on the ESG Documentation CD-ROM as basicex2.txt.

10 | **kdkkkhkhhrrrrrrrrrrrrdddi

20 !

30 ! PROGRAM NAME: basi cex2. t xt

46 Chapter 2

Programming Examples
GPIB Programming Examples

40 !

50 I PROGRAM DESCRI PTION: I n REMOTE nbde, access to the signal generators

60 ! functional front panel keys are disabl ed except for
70 ! the Local and Contrast keys. The LOCAL LOCKOUT

80 ! command wil |l disable the Local key.

90 ! The LOCAL conmmand, executed fromthe controller, is then
100 ! the only way to return the signal generator to front panel,
110 ! Local, control.

120 I KEEAE AR R AR A KK R R KRR KRR KRR AR KR K KRR KR KK R AR R R KRR AR R AR XAk
130 Si g_gen=719 | Declares a variable to hold signal generator address

140 CLEAR Sig_gen | Resets signal generator parser and clears any output

150 LOCAL Sig_gen ! Places the signal generator in |ocal node

160 REMOTE Si g_gen I Places the signal generator in renpte node

170 CLEAR SCREEN I Clears the controllers display

180 QUTPUT Sig_gen;"*RST" ! Places the signal generator in a defined state
190 ! The followi ng print statenents are user pronpts

200 PRI NT "The signal generator should now be in remote."

210 PRINT "Verify that the 'R and 'L' annunciators are visable"

220 PRINT ".......... Press Conti nue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT node

250 PRI NT ! Prints user pronpt nessages

260 PRI NT "Si gnal generator should now be in LOCAL LOCKOUT node. "

270 PRI NT

280 PRINT "Verify that all keys including “Local' (except Contrast keys) have no effect."
290 PRI NT

300 PRINT ".......... Press Conti nue"

310 PAUSE

320 PRI NT

330 LOCAL 7 I Returns signal generator to Local control

340 ! The followi ng print statements are user pronpts

350 PRI NT "Si gnal generator should now be in Local npde."

Chapter 2

47

Programming Examples
GPIB Programming Examples

360 PRI NT

370 PRINT "Verify that the signal generator's front-panel keyboard is functional."
380 PRI NT

390 PRINT "To re-start this program press RUN."

400 END

Local Lockout Using NI-488.2 and C++

This example uses the N1-488.2 library to set the signal generator local lockout mode. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as niex2.cpp.

J] RR kR kR k kR ko Rk Rk kR Rk kR Rk kR kR kR kR Rk Rk Rk Rk Rk Rk Rk Rk Rk Rk Rk k
/1 PROGRAM NAME: ni ex2.cpp

/1

/1 PROGRAM DESCRI PTI ON: This programw || place the signal generator into

/1 LOCAL LOCKOUT node. All front panel keys, except the Contrast key, will be disabled
/1 The local command, 'ibloc(sig)' executed via programcode, is the only way to

/1 return the signal generator to front panel, Local, control

// khkkhkkhkkhkkhkkhkhkhkhhhrhrhkhkhhkhkhk kA Ak kA kkk k%

#i ncl ude "stdaf x. h"
#i ncl ude <i ostreanv
#i ncl ude "w ndows. h"
#i ncl ude "Decl -32. h"

usi ng namespace std

int GPlIBO= 0; /1 Board handl e
Addr 4882_t Address[31]; /] Declares a variable of type Addr4882_t
int main()
{
int sig; /'l Declares variable to hold interface descriptor

sig = ibdev(0, 19, 0, 13, 1, 0); /1l Opens and initialize a device descriptor

48 Chapter 2

Programming Examples
GPIB Programming Examples

ibclr(sig); /1 Sends GPIB Selected Device Clear (SDC) nessage
ibwt(sig, "*RST", 4); /'l Places signal generator in a defined state
cout << "The signal generator should now be in REMOTE. The renote nbpde R "<<endl;
cout <<"annunci ator shoul d appear on the signal generator display."<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n");

Sendl FC(GPI BO) ; /!l Resets the GPIB interface
Addr ess[0] =19; /1 Signal generator's address
Addr ess[1] =NOADDR; /1l Signifies end element in array. Defined in

/1 DECL-32.H
Set RALS(GPI BO, Address); /1 Places device in Renpte with Lockout State.

cout << "The signal generator should now be in LOCAL LOCKQUT. Verify that all
keys" <<endl ;

cout<< "including the 'Local' key are disabled (Contrast keys are not
af f ect ed) " <<endl ;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n");

ibloc(sig); /1 Returns signal generator to |local control
cout <<endl ;

cout <<"The signal generator should now be in |ocal node\n";

return 0;}

}

Queries Using Agilent BASIC

This example demonstrates signal generator query commands. The signal generator can be queried for
conditions and setup parameters. Query commands are identified by the question mark asin the identify
command * | DN?

The following program example is available on the ESG Documentation CD-ROM as basicex3.txt.

10
20
30
40
50

| **kkkkhkhkhhhdhdhhhhhrrrrrrrrrrr b rdddd*
|

I PROGRAM NAME: basi cex3. t xt

|

! PROGRAM DESCRIPTION: In this exanple, query comrands are used with response

Chapter 2 49

Programming Examples
GPIB Programming Examples

60 ! data formats.

70 !

80 ! CLEAR and RESET the controller and RUN the follow ng program

90 !

100 D EFEEE Rk Rk ko k kA k ko k ko k Kk Kk kR kR Kk kR kR kR kR kR kR Rk kR kR kR kR Rk Rk Rk
110 !

120 DI M A3$[10], C3$[100] , D$[10] ! Declares variables to hold string response data
130 | NTEGER B | Declares variable to hold integer response data
140 Sig_gen=719 ! Declares variable to hold signal generator address
150 LOCAL Sig_gen I Puts signal generator in Local node

160 CLEAR Si g_gen | Resets parser and clears any pending out put

170 CLEAR SCREEN ! Clears the controller’s display

180 QUTPUT Si g_gen; "*RST" I Puts signal generator into a defined state

190 OQUTPUT Si g_gen; " FREQ CwWp" ! Querys the signal generator CWfrequency setting
200 ENTER Si g_gen; F I Enter the CWfrequency setting

210 ! Print frequency setting to the controller display

220 PRI NT "Present source CWfrequency is: ";F/ 1. E+6;" Miz"

230 PRI NT

240 OQUTPUT Si g_gen; "POW AMPL?" | Querys the signal generator power |evel

250 ENTER Si g_gen; W | Enter the power |evel

260 ! Print power level to the controller display

270 PRI NT "Current power setting is: ";W"dBM

280 PRI NT

290 QUTPUT Si g_gen;"FREQ MODE?" ! Querys the signal generator for frequency node

300 ENTER Si g_gen; A$! Enter in the node: CW Fixed or List

310 ! Print frequency node to the controller display

320 PRI NT "Source's frequency node is: ";A$

330 PRI NT

340 QUTPUT Si g_gen; " OUTP OFF" I Turns signal generator RF state off

350 QUTPUT Si g_gen; " OUTP?" ! Querys the operating state of the signal generator
360 ENTER Si g_gen; B I Enter in the state (0 for off)

370 ! Print the on/off state of the signal generator to the controller display

50 Chapter 2

Programming Examples
GPIB Programming Examples

380 I F B>0 THEN

390 PRI NT "Signal Generator output is: on"

400 ELSE

410 PRI NT "Signal Generator output is: off"

420 END | F

430 QUTPUT Sig_gen;"*I| DN?" I Querys for signal generator ID
440 ENTER Si g_gen; C$! Enter in the signal generator |ID
450 ! Print the signal generator IDto the controller display

460 PRI NT

470 PRI NT "This signal generator is a ";C$

480 PRI NT

490 ! The next conmand is a query for the signal generator's GPIB address
500 OQUTPUT Si g_gen; " SYST: COWM GPI B: ADDR?"

510 ENTER Si g_gen; D$! Enter in the signal generator's address
520 I Print the signal generator's GPIB address to the controllers display
530 PRINT "The GPIB address is "; D$

540 PRI NT

550 ! Print user pronpts to the controller's display

560 PRI NT "The signal generator is now under |ocal control"

570 PRINT "or Press RUNto start again."

580 END

Queries Using NI-488.2 and C++

This example uses the NI1-488.2 library to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as niex3.cpp.

[R R R KRR KRR KRR KRR KRR KRR KRR KRR KRR KRR R KRR KRR KK KKK Rk
/1 PROGRAM NAME: ni ex3. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denponstrates the use of query conmands

/1

/1 The signal generator can be queried for conditions and instrunent states

Chapter 2 51

Programming Examples
GPIB Programming Examples

/1
/1
/1
/1

#i
#i
#i
#i
us
in

Ad

in

These commands are of the type "*IDN?" where the question mark indicates

a query.

khkkhkkhkhkkhkkhhhkhkhhhkhhrrrhr kA kA Ak Ak kA Ak kA k k%%

ncl ude "stdafx. h"
ncl ude <i ostreane
ncl ude "wi ndows. h"

ncl ude "Decl -32. h"

i ng namespace std;

t GPI BO= 0; /1 Board handl e

dr4882_t Address[31]; /1l Declare a variable of type Addr4882_t

t main()

int sig; /1 Declares variable to hold interface descriptor
int num

char rdVval [100]; /| Declares variable to read instrunent responses

sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor

ibloc(sig); /1 Places the signal generator in |ocal node
ibclr(sig); /'l Sends Sel ected Device C ear(SDC) nessage
ibwt(sig, "*RST", 4); /'l Places signal generator in a defined state

ibwt(sig, ":FREQuency: CW",6 14); // Querys the CWfrequency

ibrd(sig, rdval, 100); /!l Reads in the response into rdVal
rdval [i bentl] = '"\0"; /1 Null character indicating end of array
cout <<"Source CWfrequency is "<<rdVal; /1 Print frequency of signal generator

cout <<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwt(sig, "POWAMPL?",10); /1l Querys the signal generator
ibrd(sig, rdval, 100); /'l Reads the signal generator power |evel
rdval [i bentl] = "\0"; /1 Null character indicating end of array

52

Chapter 2

Programming Examples
GPIB Programming Examples

/1 Prints signal generator power |evel
cout <<"Source power (dBm is : "<<rdVal;
cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwt(sig, ":FREQ MODE?", 11); /1 Querys source frequency node
ibrd(sig, rdval, 100); /1l Enters in the source frequency node
rdval [i bentl] = '"\0"; /1 Null character indicating end of array

cout <<"Source frequency node is "<<rdVal; // Print source frequency node
cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwt(sig, "OUTP OFF", 12); /1 Turns off RF source
ibwt(sig, "OUTP?",5); /'l Querys the on/off state of the instrument
ibrd(sig,rdval, 2); /1 Enter in the source state

rdval [i bentl] = '"\0";
num = (int (rdval[0]) -('0"));
if (num > 0){
cout<<"Source RF state is : On"<<endl;
}el se{

cout<<"Source RF state is : Of"<<endl;}

cout <<endl ;

ibwt(sig, "*IDN?",5); /1 Querys the instrument ID

ibrd(sig, rdval, 100); /! Reads the source ID

rdval [i bentl] = '"\0"; /1 Null character indicating end of array
cout<<"Source IDis : "<<rdVal; [// Prints the source ID

cout <<"Press any key to continue"<<endl;

cin.ignore(10000,'\n");

ibwrt(sig, "SYST: COM GPI B: ADDR?", 20); //Querys source address

ibrd(sig, rdval, 100); /'l Reads the source address

rdval [i bentl] = "\0"; /1 Null character indicates end of array
/1 Prints the signal generator address

cout <<"Source GPIB address is : "<<rdVal;

cout <<endl ;

Chapter 2 53

Programming Examples
GPIB Programming Examples

cout<<"Press the 'Local' key to return the signal generator to LOCAL control " <<endl
cout <<endl

return 0

}
Queries Using VISA and C

This example uses VISA library functions to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as visaex3.cpp.

R R T R T T T T T T o
/1 PROGRAM FI LE NAME: vi saex3. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates the use of query commands. The signa

/'l generator can be queried for conditions and instrunent states. These comands are of

/1 the type "*IDN?"; the question mark indicates a query.

/1

//**

#i ncl ude <vi sa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanv
#i ncl ude <coni o. h>
#i ncl ude <stdlib. h>

usi ng namespace std

void main ()

{

Vi Sessi on defaul tRM vi; /1 Decl ares variables of type Vi Session
/1 for instrument communication

Vi Status vi Status = 0; /1 Declares a variable of type Vi Status
/1 for GPIB verifications

char rdBuffer [256]; /] Declares variable to hold string data

54 Chapter 2

Programming Examples
GPIB Programming Examples

int num /] Declares variable to hold integer data

/1 Initialize the VISA system
vi St at us=vi OpenDef aul t RM &def aul t RM ;

/1 Open session to GPIB device at address 19

vi St at us=vi Open(defaul tRM "GPl B::19::INSTR', VI_NULL, VI_NULL, &vi);

if(viStatus)({ /1 |f problems, then pronpt user
printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}
viPrintf(vi, "*RST\n"); /] Resets signal generator
viPrintf(vi, "FREQ CW\n"); /'l Querys the CWfrequency
vi Scanf (vi, "%", rdBuffer); /! Reads response into rdBuffer

/1 Prints the source frequency
printf("Source CWfrequency is : %\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); /1 Prints new line character to the
getch();

viPrintf(vi, "PONAMPL?AN"); /'l Querys the power |evel

vi Scanf (vi, "%", rdBuffer); /'l Reads the response into rdBuffer

/1 Prints the source power |evel
printf("Source power (dBm) is : %\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); /1l Prints new |line character to the
getch();
viPrintf(vi, "FREQ MODE?\n"); /'l Querys the frequency node
vi Scanf (vi, "%", rdBuffer); /'l Reads the response into rdBuffer
/1 Prints the source freq node
printf("Source frequency node is : %\n", rdBuffer);
printf("Press any key to continue\n");
printf("\n"); /1l Prints new |line character to the

getch();

di spl ay

di spl ay

di spl ay

Chapter 2

55

Programming Examples
GPIB Programming Examples

viPrintf(vi, "OUTP OFF\n"); /1 Turns source RF state off
viPrintf(vi, "OUTP?\n"); /1l Querys the signal generator's RF state
vi Scanf (vi, "%i", &un); /'l Reads the response (integer val ue)

/1 Prints the on/off RF state
if (num> 0) {
printf("Source RF state is : on\n");
}el sef
printf("Source RF state is : off\n");
}

/1 O ose the sessions

vi Cl ose(vi);
vi Cl ose(defaul tRVM ;
}

Generating a CW Signal Using VISA and C

This example uses VISA library functions to control the signal generator. The signal generator is set for a
CW frequency of 500 kHz and a power level of —2.3 dBm. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex4.cpp.

R R T R T T T T T
/1 PROGRAM FI LE NAME: Vi saex4. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denonstrates query comrands. The signal generator
/1 frequency and power |evel.

/1 The RF state of the signal generator is turn on and then the state is queried. The

/'l response will indicate that the RF state is on. The RF state is then turned off and
/1 queried. The response should indicate that the RF state is off. The query results are
/1 printed to the to the display w ndow.

/1

] R R KKk kK ok ok kK K ok ok kK Kk ok o kK Kk ok o kK R ok ok o kR K ok ok sk kR ok ok o kR ok ok o R R ok kR R R ok ok R R R ok ok kR Rk kK

#i ncl ude " St dAf x. h"

56 Chapter 2

Programming Examples
GPIB Programming Examples

#i ncl ude <vi sa. h>
#i ncl ude <i ostreanp
#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM i ; /| Declares variables of type Vi Session
[/ for instrument conmunication

Vi Status vi Status = 0; /| Declares a variable of type Vi Status
/1 for GPIB verifications

char rdBuffer [256]; /1l Declare variable to hold string data

int num /] Declare variable to hold integer data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA system

/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPl B::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problems then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

viPrintf(vi, "*RST\n"); /'l Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CWfrequency for 500 kHz
viPrintf(vi, "FREQ CWP\n"); /1l Query the CWfrequency

vi Scanf (vi, "%", rdBuffer); /1 Read signal generator response
printf("Source CWfrequency is : %\n", rdBuffer); // Print the frequency
viPrintf(vi, "PONWAWMPL -2.3 dBmin"); // Set the power level to -2.3 dBm
viPrintf(vi, "POWAWMPL?\n"); /'l Query the power |eve

vi Scanf (vi, "%", rdBuffer); /1 Read the response into rdBuffer

printf("Source power (dBm) is : %\n", rdBuffer); // Print the power |eve

Chapter 2 57

Programming Examples
GPIB Programming Examples

viPrintf(vi, "OUTP: STAT ON\\n"); // Turn source RF state on
viPrintf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &un); /'l Read the response (integer val ue)
/1 Print the on/off RF state
if (num> 0) {
printf("Source RF state is : on\n");
}el sef
printf("Source RF state is : off\n");
}
printf("\n");
printf("Verify RF state then press continue\n");
printf("\n");
getch();
vi C ear(vi);
vi Printf(vi,"OUTP: STAT OFF\n"); // Turn source RF state off
viPrintf(vi, "OUTP?\n"); /1 Query the signal generator's RF state
vi Scanf (vi, "%i", &nun); /! Read the response
/1 Print the on/off RF state
if (num>0) {
printf("Source RF state is now. on\n");
}el se{
printf("Source RF state is now off\n");
}
/1 Cose the sessions
printf("\n");
vi C ear(vi);
vi Gl ose(vi);
vi Cl ose(defaul tRM ;
}

58 Chapter 2

Programming Examples
GPIB Programming Examples

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C

In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier frequency of
700 MHz, a power level of —2.5 dBm, and a deviation of 20 kHz. Before running the program:

» Connect the output of a modulating signal source to the signal generator’s EXT 2 input connector.
e Set the modulation signal source for the desired FM characteristics.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex5.cpp.

] R R R R Rk Rk Rk kR Kk kR Rk Rk Rk kR kR Rk Rk Rk kR Rk Rk Rk Rk Rk kR Rk Rk Rk Rk Rk
/1 PROGRAM FI LE NAME: vi saex5. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e sets the signal generator FM source to External 2,

/1 coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power |eve

/1 to -2.5 dBm The RF state is set to on

/1

//**

#i ncl ude <vi sa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanv
#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

void main ()

{

Vi Session defaul tRM vi; /1 Decl ares variables of type Vi Session
/1 for instrument communication

Vi Status vi Status = 0; /| Declares a variable of type Vi Status

/1 for GPIB verifications
/1 Initialize VISA session
vi St at us=vi OpenDef aul t RM &def aul t RM ;

/'l open session to gpib device at address 19

Chapter 2 59

Programming Examples
GPIB Programming Examples

vi St at us=vi Open(defaul tRM "GPl B::19::1NSTR', VI _NULL, VI_NULL, &vi);
if(viStatus)({ /1 1f problems, then pronpt user
printf("Could not open Vi Session!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC-coupled FM signal\n");

printf("Press any key to continue\n");

printf("\n");
getch();
printf("\n");
viPrintf(vi, "*RST\n"); /1l Resets the signal generator
viPrintf(vi, "FM SOUR EXT2\n"); /] Sets EXT 2 source for FM
viPrintf(vi, "FM EXT2: COUP AC\n"); /1 Sets FM path 2 coupling to AC
viPrintf(vi, "FM DEV 20 kHz\n"); /'l Sets FM path 2 deviation to 20 kHz
viPrintf(vi, "FREQ 700 MHz\n"); /'l Sets carrier frequency to 700 MHz
viPrintf(vi, "POWAMPL -2.5 dBmin"); // Sets the power level to -2.5 dBm
viPrintf(vi, "FM STAT ON\\n"); /1 Turns on frequency nodul ation
viPrintf(vi, "OUTP: STAT ON\\n"); /1 Turns on RF output

/1 Print user infornmation
printf("Power level : -2.5 dBmn");
printf("FMstate : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 700 MHZ\n");
printf("Deviation : 20 kHzZ\n");
printf("EXT2 and AC coupling are selected\n");
printf("\n"); /1l Prints a carrage return

/1l C ose the sessions
vi Cl ose(vi);

vi Cl ose(defaul tRM ;

60

Chapter 2

Programming Examples
GPIB Programming Examples

}

Generating an Internal AC-Coupled FM Signal Using VISA and C

In this example the VISA library is used to generate an ac-coupled internal FM signal at a carrier frequency
of 900 MHz and a power level of —15 dBm. The FM rate will be 5 kHz and the peak deviation will be 100
kHz. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file.

The following program example is available on the ESG Documentation CD-ROM as visaex6.cpp.

R T R T T T T T
/1 PROGRAM FI LE NAME: vi saex6. cpp

/1

/1 PROGRAM DESCRI PI ON: Thi s exanpl e generates an AC-coupled internal FM signal at a 900

/!l MHz carrier frequency and a power level of -15 dBm The FMrate is 5 kHz and the peak
/1 deviation 100 kHz

/1

//**

#i ncl ude <visa. h>

#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanv
#i nclude <stdlib. h>

#i ncl ude <coni o. h>

void main ()

{

Vi Sessi on defaul tRM i ; /| Declares variables of type Vi Session
[/ for instrument conmunication

Vi Status vi Status = 0; /| Declares a variable of type Vi Status

/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &defaul tRM; // Initialize VISA session
/] open session to gpib device at address 19

vi St at us=vi Open(defaul tRM "GPIB::19::1NSTR', VI _NULL, WVI_NULL, &vi)

Chapter 2 61

Programming Examples
GPIB Programming Examples

if(viStatus)({ /1 1f problems, then pronpt user
printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("Exanple programto set up the signal generator\n");
printf("for an AC coupled FM signal\n");
printf("\n");

printf("Press any key to continue\n");

getch();
vi C ear(vi); /1 Cears the signal generator
viPrintf(vi, "*RST\n"); /'l Resets the signal generator

viPrintf(vi, "FM2:INT: FREQ 5 kHz\n"); // Sets EXT 2 source for FM

viPrintf(vi, "FM2:DEV 100 kHz\n"); /1l Sets FM path 2 coupling to AC
viPrintf(vi, "FREQ 900 MHz\n"); /] Sets carrier frequency to 700 MHz
viPrintf(vi, "POW-15 dBmn"); /] Sets the power level to -2.3 dBm
viPrintf(vi, "FM2:STAT ON\\n"); /1 Turns on frequency nodul ation
viPrintf(vi, "OUTP: STAT ON\\n"); /1 Turns on RF output
printf("\n"); /1 Prints a carriage return

/1 Print user infornation
printf("Power level : -15 dBmn");
printf("FMstate : on\n");
printf("RF output : on\n");
printf("Carrier Frequency : 900 MHZ\n");
printf("Deviation : 100 kHzZ\n");
printf("Internal nmodulation : 5 kHz\n");
printf("\n"); /1 Print a carrage return

/1 Close the sessions
vi Cl ose(vi);
vi Cl ose(defaul tRVM ;
}

62

Chapter 2

Programming Examples
GPIB Programming Examples

Generating a Step-Swept Signal Using VISA and C

In thisexample the VISA library is used to set the signal generator for a continuous step sweep on a defined
set of points from 500 MHz to 800 MHz. The number of stepsis set for 10 and the dwell time at each stepis
set to 500 ms. The signal generator will then be set to local mode which allows the user to make adjustments
from the front panel. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code
into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as visaex7.cpp.

[R R Rk Rk Rk Rk kR kR Kk kR Rk Rk kR kR Rk kR Rk kR Rk kR Rk Rk Rk kR Rk R Rk Rk Rk
/1 PROGRAM FI LE NAME: vi saex7. cpp

/1

/1 PROGRAM DESCRI PTI ON: This exanmple will programthe signal generator to performa step

/1 sweep from500-800 MHz with a .5 sec dwell at each frequency step.

/1

//**

#i ncl ude <vi sa. h>
#i ncl ude " St dAf x. h"

#i ncl ude <i ostreanp

void main ()

{

Vi Sessi on defaul tRM vi;// Declares variables of type Vi Session
/1 vi establishes instrument communication

Vi Status viStatus = 0;// Declares a variable of type Vi Status

/1 for GPIB verifications

vi St at us=vi OpenDef aul t RM &defaultRM; // Initialize VISA session
/1 Open session to GPIB device at address 19
vi St at us=vi Open(defaul tRM "GPl B::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(visStatus){// If problems, then pronpt user
printf("Could not open Vi Session!\n");

printf("Check instruments and connections\n");

Chapter 2 63

Programming Examples
GPIB Programming Examples

printf("\n");
exit(0);}

vi C ear(vi);

viPrintf(vi, "*RST\n");

viPrintf(vi, "*CLS\n");

viPrintf(vi, "FREQ MODE LIST\n");
viPrintf(vi, "LIST: TYPE STEP\n");
viPrintf(vi, "FREQ STAR 500 MHz\n");

viPrintf(vi, "FREQ STOP 800 MHz\n");

viPrintf(vi, "SWE PO N 10\n");
viPrintf(vi, "SWEDWEL .5 S\n");
viPrintf(vi, "PONAWMPL -5 dBmn");
vi Printf(vi, "OUTP: STAT ON\n");

viPrintf(vi, "INIT: CONT O\Mn");
pri

is\n");
pri

step.\n");
printf("\n");
viPrintf(vi, "OUTP: STAT OFF\n");
printf("Press the front panel Local
printf("signal generoator to manual
printf("\n");

vi G ose(vi);
vi Cl ose(defaul tRM ;
}

/1
/1
11
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

/1

Cl ears the signal generator

Resets the signal generator
Clears the status byte register
Sets the sig gen freq node to Iist
Sets sig gen LIST type to step
Sets start frequency

Sets stop frequency

Sets nunber of steps (30 nHz/step)
Sets dwell time to 500 ns/step
Sets the power level for -5 dBm
Turns RF out put on

Begi ns the step sweep operation

Print user information

ntf("The signal generator is in step sweep node. The frequency range

ntf("500 to 800 mHz. There is a .5 sec dwell time at each 30 mHz

Prints a carriage return/line feed

/1 Turns the RF output off

/1

key to return the\n");

operation.\n");

Cl oses the sessions

64

Chapter 2

Programming Examples
GPIB Programming Examples

Generating a Swept Signal Using VISA and Visual C++

This example sets up the signal generator for afrequency sweep from 1 to 2 GHz with 101 points and a .01
second dwell period for each point. A loop is used to generator 5 sweep operations. The signal generator
triggers each sweep with the: | Nl T command. There is await introduced in the loop to allow the signal
generator to complete all operations such as set up and retrace before the next sweep is generated.

The following program example is available on the ESG Documentation CD-ROM as visaex11.cpp.
[R R R kR kR kR kK Rk kR kR kR Rk kR kR kR kR kR kR Rk Kk Rk Rk Rk
/1 PROGRAM FI LE NAME: vi saexll. cpp

/1

/1 PROGRAM DESCRI PTI ON: This program sets up the signal generator to

/Il sweep from1-2 GHz. A loop and counter are used to generate 5 sweeps.

/1l Each sweep consists of 101 points with a .01 second dwell at each point.
/1

/'l The programuses a Sleep function to allow the signal generator to

/1 conplete it's sweep operation before the INIT command is sent.

/1 The Sleep function is available with the wi ndows.h header file which is
/1 included in the project.

/1

/1 NOTE: Change the TCPI PO address in the instOpenString declaration to

/1 match the I P address of your signal generator.

/1

//**

#i ncl ude "stdaf x. h"
#i ncl ude "visa. h"
#i ncl ude <i ostreanp

#i ncl ude <w ndows. h>

void main ()
{
Vi Status stat;

Vi Sessi on defaul tRMinst;

Chapter 2 65

Programming Examples
GPIB Programming Examples

int npoints = 101;
doubl e dwell = 0.01;
int intCounter=5;

char* instQpenString = "TCPI PO: : 141. 121. 93. 101: : | NSTR";

stat = vi OpenDef aul t RM &def aul tRM ;

stat = vi Open(defaul t RMinstQpenString, VI _NULL, VI _NULL, &i nst);

/] preset to start clean

stat = viPrintf(inst, "*RST\n");

/1 set power |evel for -10dBm

stat = viPrintf(inst, "POW-10DBM n");

/1l set the start and stop frequency for the sweep
stat = viPrintf(inst, "FREQ START 1GHZ\n");

stat = viPrintf(inst, "FREQ STOP 2GHZ\n");

/1 setup dwell per point

stat = viPrintf(inst, "SWEEP: DAELL %\ n", dwell);
/1 setup nunber of points

stat = viPrintf(inst, "SWEEP: PO NTS %\ n", npoints);

/1 set interface timeout to double the expected sweep tine
/1 sweep takes (~15n8 + dwell) per point * nunmber of points

/1 the timeout should not be shorter then the sweep, set

/1 1onger
long tinmeoutMs = | ong(2*npoi nts*(.015+dwel |)*1000);

/1 set the VISA tinmeout

stat = viSetAttribute(inst, VI_ATTR TMO VALUE, tineoutM5);

/1 set continuous trigger node off

stat = viPrintf(inst, "IN T: CONT OFF\n");

66

Chapter 2

Programming Examples
GPIB Programming Examples

/1 turn list sweep on

stat = viPrintf(inst, "FREQ MODE LIST\n");

int sweepNo = 0;

whi | e(i nt Counter>0)

{
/] start the sweep (initialize)
stat = viPrintf(inst, "INIT\n");
printf("Sweep % started\n", ++sweepNo);
/1 wait for the sweep conpletion with *OPC?
int res ;
stat = viPrintf(inst, "*OPC?\n");
stat = vi Scanf (inst, "%", &res);
/1 handl e possible errors here (nost likely a tinmeout)
/1 err_handler(inst, stat);
put s(" Sweep ended");
/1 delay before sending next INIT since instrunent
/1 may not be ready to receive it yet
Sl eep(15);

intCounter = intCounter-1,;
}

printf("End of Programin\n");

}

Saving and Recalling States Using VISA and C

In this example, instrument settings are saved in the signal generator’s save register. These settings can then
be recalled separately; either from the keyboard or from the signa generator’sfront panel. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as visaex8.cpp.

Chapter 2 67

Programming Examples
GPIB Programming Examples

//**

/1 PROGRAM FI LE NAME: vi saex8. cpp

/1

/1 PROGRAM DESCRI PTION: I n this exanple, instrunent settings are saved in the signa

/! generator's registers and then recalled

/1 Instrunent settings can be recalled fromthe keyboard or, when the signal generator

/1 is put

into Local control, fromthe front panel

/1 This programw |l initialize the signal generator for an instrunent state, store the

/]l state to register #1. An *RST conmmand will reset the signal generator and a *RCL

/1 command will return it to the stored state. Following this renote operation the user

[will
/1

be instructed to place the signal generator in Local nopde

//**

#i ncl ude
#i ncl ude
#i ncl ude

#i ncl ude

<vi sa. h>
" St dAf x. h"
<i ostreanp

<coni 0. h>

void main ()

{

Vi Sessi on defaul tRM vi;// Declares variables of type Vi Session

/1 for instrunent conmunication

Vi St at us

vi Status = 0;// Declares a variable of type Vi Status

/1l for GPIB verifications

| ong I ngbone = 0; /1 Operation conplete flag

vi St at us=

vi OpenDef aul t RM &def aul t RM) ; /1 Initialize VISA session

/1 Open session to gpib device at address 19

vi St at us=

vi Open(defaul tRM "GPIB::19::INSTR', VI _NULL, WVI_NULL, &vi);

if(visStatus){// |f problens, then pronpt user

printf("Could not open ViSession!\n");

68

Chapter 2

Programming Examples
GPIB Programming Examples

printf("Check instruments and connections\n");

printf("\n");

exit(0);}
printf("\n");
vi C ear(vi); /1 Clears the signal generator
viPrintf(vi, "*CLS\n"); /'l Resets the status byte register

/1 Print user infornmation
printf("Progranm ng exanpl e using the *SAV,*RCL SCPI commands\ n");

printf("used to save and recall an instrunment's state\n");

printf("\n");

viPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "FREQ5 MHz\n"); /1l Sets sig gen frequency
viPrintf(vi, "POWNALC OFF\n"); /1 Turns ALC O f

viPrintf(vi, "POWAWPL -3.2 dBmn"); // Sets power for -3.2 dBm

viPrintf(vi, "OUTP: STAT OM\n"); /1l Turns RF output On

viPrintf(vi, "*OPC?\n"); /'l Checks for operation conplete

while (!l ngDone)
vi Scanf (vi ,"%l", & ngDone); /1 Waits for setup to conplete
viPrintf(vi, "*SAV 1\n"); /] Saves sig gen state to register #1
/1 Print user infornmation
printf("The current signal generator operating state will be saved\n");

printf("to Register #1. Cbserve the state then press Enter\n");

printf("\n"); /1 Prints new line character

getch(); /1 Wait for user input

| ngDone=0; /'l Resets the operation conplete flag
viPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "*0OPC?\n"); /'l Checks for operation conplete

while (!l ngDone)
vi Scanf (vi ,"%l", & ngDone) ; /1 Waits for setup to conplete
/1 Print user infronmation
printf("The instrunent is nowin it's Reset operating state. Press the\n");

printf("Enter key to return the signal generator to the Register #1

Chapter 2 69

Programming Examples
GPIB Programming Examples

state\n");

printf("\n"); /1 Prints new line character
getch(); /1 Waits for user input
| ngDone=0; /'l Reset the operation conplete flag
viPrintf(vi, "*RCL 1\n"); /! Recalls stored register #1 state
viPrintf(vi, "*0OPC?\n"); /'l Checks for operation conplete
while (!l ngDone)

vi Scanf (vi ,"%l", & ngDone) ; /1 Waits for setup to conplete

/1 Print user information

printf("The signal generator has been returned to it's Register #1
state\n");

printf("Press Enter to continue\n");

printf("\n"); /1 Prints new line character
getch(); /1 Waits for user input

| ngDone=0; /'l Reset the operation conplete flag
viPrintf(vi, "*RST\n"); /'l Resets the signal generator
viPrintf(vi, "*OPC?\n"); /'l Checks for operation conplete

whil e (!l ngDone)
vi Scanf (vi ,"%l", & ngDone) ; /1 Waits for setup to conplete
/1 Print user infornmation
printf("Press Local on instrument front panel to return to nanual node\n");
printf("\n"); /1 Prints new line character
/'l O ose the sessions
vi Cl ose(vi);
vi Cl ose(defaul tRVM ;
}

Reading the Data Questionable Status Register Using VISA and C

In this example, the signal generator’s data questionable status register isread. You will be asked to set up
the signal generator for error generating conditions. The data questionable status register will be read and the
program will notify the user of the error condition that the setup caused. Follow the user prompts presented
when the program runs. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following
code into your .cpp source file.

70 Chapter 2

Programming Examples
GPIB Programming Examples

The following program example is available on the ESG Documentation CD-ROM as visaex9.cpp.

[] Rk R Rk Rk Rk Kk kR kR kR Rk kR kR Rk kR kR kR Rk kR kR Rk Rk Rk Rk Rk Rk Rk Rk Rk
/1 PROGRAM NAME: vi saex9. cpp

/1

/1 PROGRAM DESCRI PTION: I n this exanple, the data questionable status register is read

/1 The data questionable status register is enabled to read an unl evel ed condition

/1 The signal generator is then set up for an unleveled condition and the data

/1 questionable status register read. The results are then displayed to the user

/1 The status questionable register is then setup to nonitor a nodul ation error condition
/1 The signal generator is set up for a nodulation error condition and the data

/1 questionable status register is read

/1 The results are displayed to the active w ndow.

/1

//***

#i ncl ude <visa. h>
#i ncl ude " St dAf x. h"
#i ncl ude <i ostreanp

#i ncl ude <coni o. h>

void main ()

{

Vi Session defaultRM vi;// Declares a variables of type Vi Session
/1 for instrument communication

Vi Status vi Status = 0;// Declares a variable of type Vi Status

/1 for GPIB verifications

int num=0;// Declares a variable for switch statenents

char rdBuffer[256] ={0}; /1l Declare a variable for response data

vi St at us=vi OpenDef aul t RM &def aul t RM ; /1 Initialize VISA session

/1 Open session to GPIB device at address 19

Chapter 2 71

Programming Examples
GPIB Programming Examples

vi St at us=vi Open(defaul tRM "GPl B::19::1NSTR', VI _NULL, VI_NULL, &i);
if(viStatus){ /1l |f problems, then pronpt user
printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viC ear(vi);// Clears the signal generator

/1 Prints user information

ntf (" Progranmm ng exanple to denpnstrate reading the signal generator's
Status Byte\n");

pr

printf("\n");
pr
pr
pr
pr
pr
pr
pr
pr
getch(); /1 Waits for keyboard user input

ntf("Manually set up the sig gen for an unl evel ed output condition:\n");

ntf("* Set signal generator output anplitude to +20 dBmn");

ntf("* Set frequency to nmaxi mum val ue\n");

ntf("* Turn On signal generator's RF Qutput\n");

ntf("* Check signal generator's display for the UNLEVEL annuni ator\n");

ntf("\n");

ntf("Press Enter when ready\n");

ntf("\n");

vi Printf(vi, "STAT: QUES: PON ENAB 2\ n"); /'l Enables the Data Questionabl e
/1 Power Condition Register Bits
/'l Bits '0" and '1'

vi Printf(vi, "STAT: QUES: PON COND?\ n"); /1l Querys the register for any
/'l set bits

vi Scanf (vi, "%", rdBuffer); /! Reads the deci mal sum of the
Il set bits

nun=(int (rdBuffer[1]) -('0")); /1l Converts string data to

/'l numeric

72 Chapter 2

Programming Examples
GPIB Programming Examples

switch (num /1 Based on the decinal value

{

case 1:

printf("Signal Generator Reverse Power Protection

Tri pped\n");
printf("/n");
br eak;
case 2:

printf("Signal Generator Power is Unleveled\n");
printf("\n");
br eak;
defaul t:
printf("No Power Unleveled condition detected\n");
printf("\n");
}
viClear(vi); /'l Cears the signal generator
/1 Prints user infornmation
I \n");
ntf("\n");

pr
pr
pr
pr
printf("* Select AM Source Ext 1 and Ext Coupling AC\n");

ntf("Manually set up the sig gen for an unlevel ed output condition:\n");

ntf("\n");

ntf("* Sel ect AM nodul ation\n");

printf("* Turn On the nodul ation.\n");
printf("* Do not connect any source to the input\n");

printf("* Check signal generator's display for the EXT1 LO annunciator\n");

printf("\n");
pr

printf("\n");

ntf("Press Enter when ready\n");

getch(); /1 Waits for keyboard user input
viPrintf(vi, "STAT: QJES: MOD: ENAB 16\ n"); // Enables the Data Questionable
/1 Modul ation Condition Register

Chapter 2 73

Programming Examples
GPIB Programming Examples

/l bits '0","1,"2",'3 and '4

vi Printf(vi, "STAT: QUES: MOD: COND?\ n") ; /1 Querys the register for any
/'l set bits

vi Scanf (vi, "%", rdBuffer); /! Reads the deci mal sum of the
Il set bits

nume(int (rdBuffer[1]) -

switch (num
{
case 1:

printf("Signal

printf("\n");
br eak;
case 2:

printf("Signal

printf("\n");
br eak;
case 4:

printf("Signal

printf("\n");
br eak;
case 8:

printf("Signal

printf("\n");
br eak;
case 16:

printf("Signal
printf("\n");
br eak;

defaul t:

printf("No Problens with

printf("\n");

Cener at or

Cener at or

Cener at or

Cener at or

Cener at or

('0")); // Converts string data to nuneric

/1l Based on the decimal value

Modul ation 1 Under nod\n");

Modul ation 1 Overnmod\n");

Modul ation 2 Under nod\ n");

Modul ation 2 Overnod\n");

Modul ation Uncalibrated\n");

Modul ation\n");

74

Chapter 2

Programming Examples
GPIB Programming Examples

}

/1 C ose the sessions
vi Gl ose(vi);

vi Cl ose(defaul tRVM ;

Reading the Service Request Interrupt (SRQ) Using VISA and C

This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ, the computer can
attend to other tasks while the signal generator is busy performing afunction or operation. When the signal
generator finishesit's operation, or detects afailure, then a Service Request can be generated. The computer
will respond to the SRQ and, depending on the code, can perform some other operation or notify the user of
failures or other conditions.

This program sets up a step sweep function for the signal generator and, while the operation isin progress,
prints out a series of asterisks. When the step sweep operation is complete, an SRQ is generated and the
printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file.

The following program example is available on the ESG Documentation CD-ROM as visaex10.cpp.
R T

/1

/1 PROGRAM FI LE NAME: vi saex10. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s exanpl e denpnstrates the use of a Service Request (SRQ

/1 interrupt. The program sets up conditions to enable the SRQ and then sets the signal
/1 generator for a step node sweep. The programwill enter a printing |oop which prints
/1 an * character and ends when the sweep has conpl eted and an SRQ recei ved.

/1

INEEEEAA AR R R AR R R R EEREEEEEEEE]

#i ncl ude "visa. h"

Chapter 2 75

Programming Examples
GPIB Programming Examples

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i ncl ude "w ndows. h"

#i ncl ude <coni o. h>

#define MAX_CNT 1024

int sweep=1; // End of sweeep flag

/* Prototypes */

Vi Status _VI_FUNCH i nterupt (Vi Session vi, ViEventType event Type, Vi Event event,
addr) ;

int main ()

{

Vi Sessi on defaul tRM vi;// Declares variables of type Vi Session

/1 for instrument conmunication

Vi Status vi Status = 0;// Declares a variable of type ViStatus
/1 for GPIB verifications

char rdBuffer[MAX_CNT];// Declare a block of nmenory data

vi St at us=vi OpenDef aul t RM &defaul tRM;// Initialize VISA session
if(viStatus < VI_SUCCESS){// |f problems, then pronpt user
printf("ERROR initializing VISA... exiting\n");
printf("\n");
return -1;}

/1 Open session to gpib device at address 19
vi St at us=vi Open(defaul tRM "GPl B::19::1NSTR', VI_NULL, VI_NULL, &vi);
if(viStatus){ /1 |f problems then pronpt user

printf("ERROR Could not open commrunication wth
instrument\n");

printf("\n");

Vi Addr

76

Chapter 2

Programming Examples
GPIB Programming Examples

return -1;}
vi G ear(vi); /1 Cears the signal generator

viPrintf(vi, "*RST\n"); /'l Resets signal generator

/1 Print program header and infornation

printf("** End of Sweep Service Request **\n");
printf("\n");
printf("The signal generator will be set up for a step sweep node
operation.\n");
printf("An '*" will be printed while the instrument is sweeping. The end of
\n");
printf("sweep will be indicated by an SRQ on the GPIB and the programw ||
end.\n");
printf("\n");
printf("Press Enter to continue\n");
printf("\n");
getch();
viPrintf(vi, "*CLS\n");// Cears signal generator status byte

viPrintf(vi, "STAT: OPER NTR 8\n");// Sets the Operation Status Goup // Negative
Transition Filter to indicate a // negative transition in Bit 3 (Sweeping)

/1 which will set a corresponding event in // the Operation Event Register. This occurs
/1 at the end of a sweep.

viPrintf(vi, "STAT: OPER. PTR O\n");// Sets the Operation Status Group // Positive
Transition Filter so that no

/] positive transition on Bit 3 affects the // Operation Event Register. The positive //
transition occurs at the start of a sweep.

viPrintf(vi, "STAT: OPER ENAB 8\n");// Enables Operation Status Event Bit 3 // to report
the event to Status Byte // Register Summary Bit 7.

viPrintf(vi, "*SRE 128\n");// Enables Status Byte Register Summary Bit 7
/1 The next line of code indicates the // function to call on an event

vi Status = vilnstallHandl er(vi, VI_EVENT_SERVI CE_REQ interupt, rdBuffer);
/1 The next line of code enables the // detection of an event

vi St atus = vi Enabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI_HNDLR, VI _NULL);

Chapter 2 77

Programming Examples
GPIB Programming Examples

vi Printf(vi
vi Printf(vi
viPrintf(vi
vi Printf(vi
vi Printf(vi
viPrintf(vi
vi Printf(vi
vi Printf(vi
viPrintf(vi

vi Printf(vi

vi Printf(vi

printf("\n"

, "FREQ MODE LIST\n");// Sets frequency node to |ist

, "LIST: TYPE STEP\n");// Sets sweep to step

, "LIST: TRRG SOUR IMAn");// Imediately trigger the sweep

, "LIST: MODE AUTOn");// Sets node for the list sweep

, "FREQ STAR 40 MHzZ\n"); // Start frequency set to 40 MHz

, "FREQ STOP 900 MHz\n");// Stop frequency set to 900 MHz

, "SWE: PO N 25\n");// Set nunmber of points for the step sweep
, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point

, "INIT: CONT OFF\n");// Set up for single sweep

, "TRIG SOUR IMAn");// Triggers the sweep

"INIT\n"); // Takes a single sweep

)

/1 While the instrument is sweeping have the

/1 program

busy with printing to the display.

/1 The Sleep function, defined in the header

/1 file windows.h, will pause the program

/! operation for .5 seconds

whil e (sweep==1){

printf("*");

Sl eep(500);

printf("\n"

/1 The foll

}
)

owing lines of code will stop the

/1 events and cl ose down the session

vi Status = viDi sabl eEvent (vi, VI_ALL_ENABLED EVENTS, VI _ALL_MECH);
vi Status = vi Uninstal | Handl er (vi, VI_EVENT_SERVI CE_REQ, i nterupt,
rdBuffer);
vi Status = vi C ose(vi);
vi Status = vi C ose(defaultRM;
return O;
}
78 Chapter 2

Programming Examples
GPIB Programming Examples

/1 The following function is called when an SRQ event occurs. Code specific to your

/'l requirements would be entered in the body of the function.

Vi Status _VI_FUNCH interupt (Vi Session vi, ViEventType event Type, Vi Event event,
addr)

{
Vi St at us st at us;

Viulntl6 stb;

status = vi ReadSTB(vi, &stb);// Reads the Status Byte
sweep=0;// Sets the flag to stop the "*’ printing
printf("\n");// Print user information

printf("An SRQ indicating end of sweep has occurred\n");
vi Cl ose(event);// C oses the event

return VI _SUCCESS;
}

Vi Addr

Chapter 2

79

Programming Examples
LAN Programming Examples

LAN Programming Examples

e “VXI-11 Programming Using SICL and C” on page 80

e “VXI-11 Programming Using VISA and C” on page 83

e “Setting Parameters and Sending Queries Using Sockets and C” on page 88
» “Setting the Power Level and Sending Queries Using PERL” on page 114

* “Generating aCW Signal Using Java’ on page 116

The LAN programming examplesin this section demonstrate the use of V X1-11 and Sockets LAN to control
the signal generator. For details on using FTP and TELNET refer to “Using FTP” on page 26 and “Using
Telnet LAN” on page 22 of this guide.

Before Using the Examples

To use these programming examples you must change references to the | P address and hostname to match
the IP address and hostname of your signal generator.

VXI-11 Programing

The signal generator supports the VX1-11 standard for instrument communication over the LAN interface.
Agilent 10 Libraries support the VXI-11 standard and must be installed on your computer before using the
V XI-11 protocol. Refer to “Using VXI-11" on page 20 of this Programming Guide for information on
configuring and using the VX1-11 protocoal.

The V X1-11 examples use TCPIPO as the board address.

VXI-11 Programming Using SICL and C

The following program uses the VX1-11 protocol and SICL to control the signal generator. The signal
generator is set to a1l GHz CW frequency and then queried for its ID string. Before running this code, you
must set up the interface using the Agilent 10 Libraries |O Config utility.

The following program example is available on the ESG Documentation CD-ROM as vxisicl.cpp.

[Rk R Rk Rk kR kR kR Kk kR Rk Rk Rk kR Rk Rk Rk kR Rk kR Rk Rk Rk Rk Rk Rk Rk Rk Rk ok
I

/1 PROGRAM NAME: vxi si cl . cpp

I

/1 PROGRAM DESCRI PTI ON: Sanpl e test programusing SICL and the VXI-11 protocol

80 Chapter 2

Programming Examples
LAN Programming Examples

/1
/1 NOTE: You nust have the Agilent 10 Libraries installed to run this program
/1

/1 This exanple uses the VXl -11 protocol to set the signal generator for a 1 gHz CW
/1 frequency. The signal generator is queried for operation conplete and then queried

/1l for its ID string. The frequency and ID string are then printed to the display

/1

/1 | MPORTANT: Enter in your signal generators hostnane in the instrunentNane decl aration
/1 where the "xxxxx" appears

/1

//**

#i ncl ude "stdaf x. h"
#i ncl ude <sicl.h>
#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

int main(int argc, char* argv[])

{

INST id; /| Device session id

i nt opcResponse; /1 Variable for response flag
char instrunentName[] = "xxxxx"; [/ Put your instrunment's hostnanme here

char instNaneBuf[256];// Variable to hold instrument name
char buf[256];// Variable for id string
ionerror(l_ERROR EXIT);// Register SICL error handler

/1 Open SICL instrument handl e using VXI-11 protoco

sprintf(instNaneBuf, "lan[%]:inst0", instrunmentNane)

id = iopen(instNaneBuf);// Open instrunent session

itimeout(id, 1000);// Set 1 second tineout for operations

Chapter 2 81

Programming Examples
LAN Programming Examples

printf("Setting frequency to 1 Ghz...\n");
iprintf(id, "freq 1 Giz\n");// Set frequency to 1 GHz

printf("Waiting for source to settle...\n");
iprintf(id, "*opc?\n");// Query for operation conplete

iscanf(id, "%l", &opcResponse); [/ Operation conplete flag

if (opcResponse != 1)// |f operation fails, pronpt user
{

printf("Bad response to 'OPC?'\n")

iclose(id);

exit(1)

}

iprintf(id, "FREQXAn");// Query the frequency

iscanf(id, "%", &buf);// Read the signal generator frequency
printf("\n");// Print the frequency to the display
printf("Frequency of signal generator is %\n", buf);
ipronptf(id, "*IDN?\n", "%", buf);// Query for id string
printf("Instrument ID: %\n", buf);// Print id string to display

iclose(id);// Close the session

return 0

}

82

Chapter 2

Programming Examples
LAN Programming Examples

VXI-11 Programming Using VISA and C

The following program uses the VX1-11 protocol and the VISA library to control the signal generator. The
signal generator isset to al GHz CW frequency and queried for its 1D string. Before running this code, you
must set up the interface using the Agilent 10 Libraries |O Config utility.

The following program example is available on the ESG Documentation CD-ROM as vxivisa.cpp.

] R KKk kR ok ok ok ok kK Kk ok ok kK Kk ok ok kK K ok ok o kR R ok ok kR R ok ok sk kR ok ok ok kR ok ok R Rk ok R R R ok ok R R Rk ok Kk R Rk kK

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

PROGRAM FI LE NAME: vXi vi sa. cpp

Sanpl e test programusing the VISA libraries and the VXI-11 protoco

NOTE: You mnust have the Agilent Libraries installed on your conputer to run

this program

PROGRAM DESCRI PTI ON: Thi s exanpl e uses the VXI-11 protocol and VISA to query
the signal generator for its ID string. The ID string is then printed to the
screen. Next the signal generator is set for a -5 dBm power |evel and then

queried for the power level. The power level is printed to the screen

| MPORTANT: Set up the LAN Client using the 1O Config utility

] R KKk kR Kk ok kK K ok ok ok kK Kk ok ok kK K ok ok o kK R ok ok kR Kk ok kR R ok ok kR R ok ok R Rk ok R R R ok ok R R Rk R kR Rk kK

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>

#i ncl ude " St dAf x. h"

#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

#def i ne MAX_COUNT 200

int main (void)

Chapter 2

83

Programming Examples
LAN Programming Examples

Vi Status status;// Declares a type Vi Status variable

Vi Session defaultRM instr;// Declares a type Vi Session variable
ViUl nt32 retCount;// Return count for string I/0O

Vi Char buffer[MAX_COUNT];// Buffer for string I/O

status = vi OpenDef aul t RM &def aul t RV ; /1 Initialize the system
/1 Open conmuni cation with Seri al
/1 Port 2

status = vi Open(defaul tRM "TPCIPO::19::INSTR', VI _NULL, VI_NULL, & nstr);

if(status){ /1l |f problems then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 Set timeout for 5 seconds

vi Set Attribute(instr, VI_ATTR TMO VALUE, 5000);

/1 Ask for sig gen ID string
status = viWite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

/! Read the sig gen response

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0'"; /'l Indicate the end of the string
printf("Signal Generator ID="); /1 Print header for ID
printf(buffer); /1 Print the ID string
printf("\n"); /1 Print carriage return

/1 Flush the read buffer

/1 Set sig gen power to -5dbm
status = viWite(instr, (ViBuf)"PONAMPL -5dbm n", 15, &retCount);

/'l Query the power |evel
status = viWite(instr, (ViBuf)"POMN\n",5, & et Count);

84

Chapter 2

Programming Examples
LAN Programming Examples

/'l Read the power |evel

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= "\0'"; /1 Indicate the end of the string
printf("Power level ="); /1 Print header to the screen
printf(buffer); /1 Print the queried power |evel
printf("\n");

status = vi C ose(instr); /1 Cl ose down the system

status = vi Cl ose(defaul tRM;

return O;

}

Sockets LAN Programming using C

The program listing shown in “ Setting Parameters and Sending Queries Using Sockets and C” on page 88
consists of two files; lanio.c and getopt.c. Thelanio.c file hastwo main functions; i nt mai n() andani nt
mai n1().

Thei nt mai n() function allows communication with the signal generator interactively from the command
line. The program reads the signal generator's hostname from the command line, followed by the SCPI
command. It then opens a socket to the signal generator, using port 5025, and sends the command. If the
command appears to be a query, the program queries the signal generator for aresponse, and prints the
response.

Thei nt mai n1(), after renamingtoi nt mai n() , will output a sequence of commands to the signal
generator. You can use the format as a template and then add your own code.

This program is available on the ESG Documentation CD-ROM as lanio.c

Sockets on UNIX

In UNIX, LAN communication viasocketsis very similar to reading or writing afile. The only differenceis
the openSocket () routine, which uses afew network library routines to create the TCP/IP network
connection. Once this connection is created, the st andar d fread() andfw i te() routinesare used for
network communication. The following steps outline the process:

1. Copy thelanio.c and getopt.c files to your home UNIX directory. For example, / users/ nmydir/.
2. Atthe UNIX prompt in your homedirectory type:cc -Aa -O -0 lanio lanio.c

3. Atthe UNIX prompt in your homedirectory type: . / | ani 0 xxxxx “*| DN?” where xxxxx isthe
hostname for the signal generator. Use this same format to output SCPI commands to the signal
generator.

Chapter 2 85

Programming Examples
LAN Programming Examples

Thei nt mai n1() function will output a sequence of commandsin a program format. If you want to run a
program using a sequence of commands then perform the following:

1. Renamethelanio.c i nt mai n1() toint mai n() andtheorigina i nt mai n() toi nt mai n1() .

2. Inthemai n(), openSocket () function, change the “your hostname here” string to the hostname of
the signal generator you want to control.

3. Resavethelanio.c program

4. Atthe UNIX prompttype:cc -Aa -O -0 lanio lanio.c

5. Atthe UNIX prompt type: ./l ani o

The program will run and output a sequence of SCPI commands to the signal generator. The UNIX display

will show adisplay similar to the following:

uni X nmachi ne: /users/nydir
$./lanio
ID Agilent Technol ogi es, E4438C, US70000001, C. 02.00

Frequency: +2. 5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on sockets.
The following steps outline the process for running the interactive program in the Microsoft Visual C++ 6.0
environment:

1. Renamethelanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source folder of the
Visual C++ project.

NOTE Theint main() functionin the lanio.cpp file will allow commands to be sent to the signal
generator in aline-by-line format; the user types in SCPI commands. The int main1(0)
function can be used to output a sequence of commandsin a“program format.” See
Programming Using main1() Function. bel ow.

2. Click Rebuild All from Build menu. Then Click Execute Lanio.exe. The Debug window will appear with a
prompt “Press any key to continue.” This indicates that the program has compiled and can be used to
send commands to the signal generator.

3. Click start, click Programs, then click Command Prompt. The command prompt window will appear.

86 Chapter 2

Programming Examples
LAN Programming Examples

4. At the command prompt, cd to the directory containing the lanio.exe file and then to the Debug folder.
For example C:\Socketl O\L anio\Debug.

5. After you cd to the directory where the lanio.exe file is located, type in the following command at the
command prompt: | ani 0 xxxxx “*| DN?” . For example:
C \ Socket | O Lani o\ Debug>l ani o xxxxx “*| DN?” where the xxxxx is the hostname of your
signal generator. Use this format to output SCPI commands to the signal generator in aline by line
format from the command prompt.

6. Typeexit atthecommand prompt to quit the program.

Programming Using main1() Function.

Thei nt mai n1() function will output a sequence of commands in a program format. If you want to run a
program using a sequence of commands then perform the following:

1. Enter the hostname of your signal generator in the openSocket function of the mai n1() function of the
lanio.cpp program.

2. Renamethelanio.cpp i nt mai n1() functiontoi nt mai n() andtheoriginal i nt nai n() function
toint mainl().

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display the results as shown in Figure 2-1.

Figure 2-1 Program Output Screen

‘s "C:\GPIB\Test\lanio\Debug\Lanio.exe"
ID: Agilent Technologies, E8254A, US00000001, €.01.00

[Frequency: +2.5000000000000E+08
[Power Level: -5.00000000E+000

[Press any key to continue_

cedlda

Chapter 2 87

Programming Examples
LAN Programming Examples

Setting Parameters and Sending Queries Using Sockets and C

The following programming examples are available on the ESG Documentation CD-ROM as lanio.c and
getopt.c.

1A R R R R R R RS EEEEEEEEEEEEEEEREREEEEEEEEEEEREREEEEEEREEEEEEEEEEEEEEE]

*

*

$Descri ption:

$Header: |anio.c 04/24/01
$Revision: 1.1 $

$Date: 10/24/01

PROGRAM NAME: lanio.c

Functions to talk to an Agilent signal

gener at or

via TCP/IP. Uses command-line argunents.

A TCP/I P connection to port 5025 is established and

the resultant file descriptor

instrument using regular

Exanpl es:

Query the signal generator frequency:

lani 0 xx. Xxx. xx.x ' FREQ?'

Query the signal generator power |evel:

lani 0 XX. XXx.xx.x ' POAP'

Check for errors (gets one error):

lani 0 XX.Xxx.xx.x 'syst:err?

Send a list of comands froma file, and nunber them

cat scpi_cnds | lanio -n XX.XXX.XX. X

is used to "talk" to the

I/ O nechani sms. $

88

Chapter 2

Programming Examples
LAN Programming Examples

khkkhkkhkkhkkhkhhhhkhkhkhhkhkhbhrhkrhkhkhkhkkk*k

*

* This program conpiles and runs under

* - HP-UX 10.20 (UNI X), using HP cc or gcc:

* + cc -Aa -O-o0lanio lanio.c

* + gcc -Wall -O -0 lanio lanio.c

*

* - Wndows 95, using Mcrosoft Visual C++ 4.0 Standard Edition

* - Wndows NT 3.51, using Mcrosoft Visual C++ 4.0

* + Be sure to add WSOCK32.LIB to your list of libraries!
* + Conpile both lanio.c and getopt.c

* + Consider re-nanming the files to | anio.cpp and getopt. cpp

* Consi derations:

* - On UNI X systens, file I/O can be used on network sockets.

* Thi s makes progranm ng very conveni ent, since routines |ike

* getc(), fgets(), fscanf() and fprintf() can be used. These

* routines typically use the |lower |evel read() and wite() calls.

*

* - In the Wndows environnent, file operations such as read(), wite(),
* and close() cannot be assunmed to work correctly when applied to

* sockets. Instead, the functions send() and recv() MJST be used.

***/

/* Support both Wn32 and HP- UX UNI X environment */

#i fdef _WN32 /* Visual C++ 6.0 will define this */
define W NSOCK
#endi f

#i f ndef W NSOCK
ifndef _HPUX_SOURCE

Chapter 2 89

Programming Examples
LAN Programming Examples

define _HPUX_SOURCE

endif

#endi f

#i ncl ude <stdio. h> /* for fprintf and NULL */
#i ncl ude <string. h> /* for mencpy and nenset */
#i ncl ude <stdlib. h> /* for malloc(), atol() */
#i ncl ude <errno. h> /* for strerror */

#i f def W NSOCK

#i ncl ude <wi ndows. h>

ifndef _W NSOCKAPI _

include <wi nsock. h> /'l BSD-style socket functions

endif

#el se /* UNIX with BSD sockets */
include <sys/socket.h> /* for connect and socket*/
include <netinet/in.h> /* for sockaddr_in */
include <netdb. h> /* for gethostbynane */

define SOCKET_ERRCR (-1)
define | NVALI D_SOCKET (-1)

typedef int SOCKET;

#endi f /* WNSOCK */

#i f def W NSOCK

/* Declared in getopt.c. See exanple progranms disk. */

90

Chapter 2

Programming Examples
LAN Programming Examples

extern char *optarg;

extern int optind;

extern int getopt(int argc, char * const argv[], const char* optstring);
#el se
include <unistd. h> /* for getopt(3C) */
#endi f

#def i ne COWAND_ERROR (1)
#define NO_CMD_ERROR (0)

#define SCPI_PORT 5025
#define | NPUT_BUF_SI ZE (64*1024)

/**

* Di splay usage

LR R EEEEEEEEEEEEEREREEEY]

static void usage(char *basenane)

{
fprintf(stderr,"Usage: % [-nqu] <hostname> [<conmand>]\n", basenane);
fprintf(stderr," % [-nqu] <hostnane> < stdin\n", basenane);
fprintf(stderr," -n, nunber output lines\n");
fprintf(stderr," -q, quiet; do NOT echo lines\n");
fprintf(stderr," -e, show nessages in error queue when done\n");

}

#i f def W NSOCK
int init_w nsock(void)

{

Chapter 2 91

Programming Examples
LAN Programming Examples

WORD wVer si onRequest ed;
WSADATA wsaDat a;
int err;

wVer si onRequest ed = MAKEWORD(1, 1);

wVer si onRequest ed = MAKEWORD(2, 0);

err = WBASt art up(w\Wer si onRequest ed, &wsaDat a) ;

if (err 1=0) {
/* Tell the user that we couldn't find a useable */
/* winsock.dllI. */
fprintf(stderr, "Cannot initialize Wnsock 1.1.\n");

return -1;

}

return O;

int close_w nsock(void)

WBAC eanup() ;
return O;

}
#endi f /* WNSOCK */

[FR K K K Kk K K ok kK K K K o kK K K K kK K Rk kR Kk ok Kk R R ok ok o Kk R R ok ok kR kR kR Rk R kR R Rk kK
*

> $Function: openSocket $

*

* $Description: open a TCP/IP socket connection to the instrument $

*

92 Chapter 2

*

*

*

$Parameters: $

Programming Examples
LAN Programming Examples

(const char *) hostname Network name of instrument.

This can be in dotted deci mal notation.

(int) portNunber The TCP/IP port to talk to.
Use 5025 for the SCPlI port.
$Ret urn: (int) Afile descriptor simlar to open(l).$

$Errors: returns -1 if anything goes wong $

***/

SOCKET openSocket (const char *hostnanme, int portNunber)

{

struct hostent *hostPtr;
struct sockaddr_in peeraddr_in;

SOCKET s;

menset (&peeraddr _in, 0, sizeof(struct sockaddr_in));

AR R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

/* map the desired host nane to internal form */
[Rk R kR Rk Rk kK kR Rk R Rk R Rk R Rk R Rk R Rk K Rk Rk K Ak
host Ptr = get host bynane(host nane) ;

if (hostPtr == NULL)

{

fprintf(stderr,"unable to resolve hostname '%'\n",

return | NVALI D_SOCKET;

[RRKR KKKk ok kK ok ok ok ok ok kK kK [

/* create a socket */

host nane) ;

Chapter 2

93

Programming Examples
LAN Programming Examples

J R KA KAk R Rk KRk KAk Rk
s = socket (AF_I NET, SOCK_STREAM 0);
if (s == | NVALI D_SOCKET)
{
fprintf(stderr,"unable to create socket to "%': %\n",
host name, strerror(errno));

return | NVALI D_SOCKET;

mencpy(&peeraddr _i n. si n_addr.s_addr, hostPtr->h_addr, hostPtr->h_Il ength);
peeraddr_in.sin_fam ly = AF_I NET;

peeraddr _in.sin_port = htons((unsigned short) portNunber);

if (connect(s, (const struct sockaddr*)&peeraddr_in,

si zeof (struct sockaddr_in)) == SOCKET_ERROR)

{
fprintf(stderr,"unable to create socket to '%': ¥%\n",
host name, strerror(errno));
return | NVALI D_SOCKET;
}
return s;

[FR K K K Kk K K ok kK K K K o kK K K K o kK K Kk o kK Kk ok kR R ok ok o Kk R R ok R Kk kR ok Rk R Rk kR R Rk kK
*

> $Function: commandl nstrunent $

*

* $Description: send a SCPl command to the instrument.$

*

94 Chapter 2

Programming Examples
LAN Programming Examples

* $Paraneters: $

* (FILE*) file pointer associated with TCP/IP socket.
* (const char *conmand) . . SCPI conmand string.

* $Return: (char *) a pointer to the result string.

*

* $Errors: returns O if send fails $

*
***/

int commandl nstrunment (SOCKET sock,

const char *comand)

{
int count;
/* fprintf(stderr, "Sending \"%\".\n", command); */
if (strchr(command, '\n') == NULL) {
fprintf(stderr, "Warning: missing newline on command %.\n", conmand);
}
count = send(sock, conmmand, strlen(command), 0);
if (count == SOCKET_ERROR) ({
return COVMAND_ ERROR;
}
return NO_CVD_ERROR,
}

/**

* recv_line(): simlar to fgets(), but uses recv()

LR R EREEEEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

char * recv_|ine(SOCKET sock, char * result, int maxLength)

{

Chapter 2 95

Programming Examples
LAN Programming Examples

#i f def W NSOCK
int cur_length = 0;
int count;
char * ptr = result;

int err = 1;

while (cur_length < naxLength) {
/* Get a byte into ptr */

count = recv(sock, ptr, 1, 0);

/* If no chars to read, stop. */
if (count < 1) {
br eak;

}

cur_length += count;

/* If we hit a newine, stop. */
if (*ptr == "'"\n") {

ptr++;

err = 0;

br eak;

}

ptr++;

*ptr = "\0";

if (err) {
return NULL;
} else {

return result;

96 Chapter 2

Programming Examples
LAN Programming Examples

#el se
/***
* Sinmpler UNI X version, using file I/O recv() version works too.
* This denpnstrates how to use file I/0O on sockets, in UN X
***/
FILE * instFile;
instFile = fdopen(sock, "r+");

if (instFile == NULL)

{
fprintf(stderr, "Unable to create FILE * structure : %\n",
strerror(errno));
exit(2);
}
return fgets(result, maxLength, instFile);
#endi f
}

[R R K Kk kK kK K ok ok kK Kk K ok kK Kk ok kR Rk ok kK Kk ok sk kR ok ok kR ok ok ok kR R ok Rk R Rk R kR Rk R kK

*

> $Function: querylnstrunment$

*

* $Description: send a SCPlI conmmand to the instrument, return a response. $

*

* $Paranmeters: $

* (FILE*) file pointer associated with TCP/IP socket.
* (const char *command) . . SCPlI command string.

* (char *result) where to put the result.

* (size_t) maxLength maxinum size of result array in bytes.

Chapter 2 97

Programming Examples
LAN Programming Examples

* $Return: (long) The nunmber of bytes in result buffer.

* $Errors: returns 0 if anything goes wong. $

*

***/

ong queryl nstrunent (SOCKET sock,

const char *command, char *result, size_t maxLength)

I ong ch;

char tnp_buf[8];

long resul tBytes = O;
int command_err;

int count;

[R K Kk kK ok ok ok ok kR Kk ok ok kR R R Kk ok kR R Rk Kk ok R R Rk Kk kR R Rk ok ok ok ok Rk kK ok ok kK

* Send command to signal generator

***/

conmand_err = conmmandl nstrunent (sock, conmand);

if (command_err) return COVMAND ERROR;

/***

* Read response from signal generator

LEEERE R AR EEERY]

count = recv(sock, tnmp_buf, 1, 0); /* read 1 char */

ch = tnmp_buf[0];

if ((count < 1) || (ch == EOF) || (ch =="\n"))

{
result = '\0'; / null termnate result for ascii */
return O;

}

98 Chapter 2

/* use a do-while so we can break out

do
{

if (ch =="'#)

{

/* binary data encountered - figure out what it

long nunDigits;

I ong nunBytes = 0;
/* char length[10]; */
count = recv(sock, tnmp_buf,
ch = tnp_buf[0];

if ((count < 1) ||

if (ch<'0 ||
nunmDigits = ch - '0';

if (nunDigits)

1, 0);

(ch == EOF)) break;

ch > '9") break;

Programming Examples
LAN Programming Examples

*/

is */

/* read 1 char */

/* End of file */

/* unexpected char */

/* read nunDigits bytes into result string. */

{
count = recv(sock, result,
result[count] = 0; /* null
nunBytes = atol (result);

}

if (nunBytes)

{
resultBytes = 0;
/* Loop until we get all

/* Each call

do {

seens to return up to 1457 bytes,

(int)nunDigits, 0);

term nate */

the bytes we requested. */

on HP-UX 9.05 */

Chapter 2

99

Programming Examples
LAN Programming Examples

int rcount;

rcount = recv(sock, result, (int)nunmBytes, 0);
resul t Bytes += rcount;

resul t += rcount; /* Advance pointer */

} while (resultBytes < nunBytes);

/**

* For LAN dunps, there is always an extra trailing newine
* Since there is no EO line. For ASCI| dunps this is

* great but for binary dunmps, it is not needed.

***/

if (resultBytes == nunBytes)

{
char junk;
count = recv(sock, & unk, 1, 0);
}
}
el se
{
/* indefinite block ... dunp til we can an extra line feed
do
{
if (recv_line(sock, result, maxLength) == NULL) break;
if (strlen(result)==1 & *result == "\n') break;
resul tBytes += strlen(result);
result += strlen(result);
} while (1);
}
}
el se
{

/* ASCI| response (not a binary block) */

100

Programming Examples
LAN Programming Examples

*result = (char)ch;

if (recv_line(sock, result+1, naxLength-1) == NULL) return O;

/* REMOVE trailing newline, if present. And terminate string.

resultBytes = strlen(result);

if (result[resultBytes-1] == '\n') resultBytes -= 1,
result[resultBytes] = '"\0";
}
} while (0);

return resul tBytes;

/***

*

> $Function: showErrors$

*

*

*

*

*

$Ret ur n:

$Description: Query the SCPI error queue, until enpty. Print results. $

(voi d)

***/

voi d showEr ror s(SOCKET sock)

{

const

char * command = "SYST: ERR?\ n";

char result_str[256];

querylnstrunent (sock, command, result_str, sizeof(result_str)-1);

Chapter 2

101

Programming Examples
LAN Programming Examples

/**
* Typical result_str:
* -221,"Settings conflict; Frequency span reduced."
* +0,"No error"

* Don't bother decoding.

**/
if (strncnp(result_str, "+0,", 3) == 0) {

/* Matched +0,"No error" */

br eak;

}

puts(result_str);

} while (1);

[R R K Kk Kk K K ok kK Kk ok kK K K ok kK R ok ok kK Kk ok kR ok ok o kR R ok R kR ok ok kR Rk R kR Rk kK
*

> $Function: isQuery$

*

* $Description: Test current SCPl command to see if it a query. $

* $Return: (unsigned char) . . . non-zero if command is a query. O if not.

***/

unsi gned char isQuery(char* cnmd)
{

unsi gned char g = 0 ;

char *query ;

/***/

102

Programming Examples
LAN Programming Examples

/* if the command has a '?' in it, use querylnstrument. */
/* otherwi se, sinmply send the command. */
/* Actually, we nust be a nore specific so that */

/* marker value querys are treated as commands. */
/* Exampl e: SENS: FREQ CENT (CALCL: MARKL: X?) */

AR R AR AR EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEREEY]

if ((query = strchr(cnd,'?")) !'= NULL)

{
/* Make sure we don't have a narker val ue query, or
* any command with a '?" followed by a ')' character
* This kind of conmand is not a query fromour point of view
* The signal generator does the query internally, and uses the result
*/
query++ ; /* bump past '?" */
whil e (*query)
{
if (*query ==" ') /* attenpt to ignore white spc */
query++
el se break
}
if (*query !'=")")
{
q=1
}
}
return g

[FR K Kk Kk K K ok kK K K K o kK K K K kK Kk ok kK Kk ok kK Rk ok o kR R kR kR R kR ok R Rk R Kk R Rk kK

*

> $Function: mai n$

Chapter 2 103

Programming Examples
LAN Programming Examples

* $Description: Read command |ine arguments, and talk to signal generator.

Send query results to stdout. $

* $Return: (int) . . . non-zero if an error occurs

*

***/

int main(int argc, char *argv[])

{

SOCKET i nst Sock;

char *charBuf = (char *) malloc(!NPUT_BUF_SI ZE);
char *basenane;

int chr;

char command[1024] ;

char *destination;

unsi gned char quiet = 0;

unsi gned char show errs = 0;

int nunber = 0;

basename = strrchr(argv[0], '/');
if (basename != NULL)

basenane++ ;
el se

basenane = argv[O0];

while ((chr = getopt(argc,argv,"qune")) != ECF)
switch (chr)

{

q:

case 'n': nunber = 1; break ;

case qui et = 1; break;

104 Chapter 2

Programming Examples
LAN Programming Examples

case 'e': show.errs = 1; break
case 'u':
case '?': usage(basenane); exit(1)

/* now | ook for hostnane and optional <conmand>*/
if (optind < argc)
{

destination = argv[optind++]

strcpy(comand, "");

if (optind < argc)

{
while (optind < argc) {
/* <host name> <command> provi ded; only one command string */
strcat (command, argv[optind++])
if (optind < argc) {
strcat (command, " ");
} else {
strcat (command, "\n");
}
}
}
el se
{

/*Only <hostnane> provided; input on <stdin> */

strcpy(comand, "");

if (optind > argc)
{
usage(basenane)

exit(1l)

Chapter 2 105

Programming Examples
LAN Programming Examples

}

}

el se

{
/* no hostname! */
usage(basenane) ;
exit(1);

}

/**

/* open a socket connection to the instrunent

AR R EEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEY]

#i f def W NSOCK

if (init_wnsock() '=0) {
exit(1);
}

#endi f /* WNSOCK */

i nst Sock = openSocket (desti nation, SCPI_PORT);

if (instSock == | NVALI D_SOCKET) {
fprintf(stderr, "Unable to open socket.\n");
return 1;

}
/* fprintf(stderr, "Socket opened.\n"); */

if (strlen(command) > 0)

{

/***

/* if the command has a '?" in it, use querylnstrument. */

/* otherw se, sinply send the conmmand. */

/***/

106

Chapter 2

Programming Examples
LAN Programming Examples

if (isQery(comrand))

{
| ong buf Byt es;
buf Byt es = queryl nstrunent (i nst Sock, conmand,
charBuf, | NPUT_BUF_SI ZE);
if ('quiet)
{
fwite(charBuf, bufBytes, 1, stdout);
fwite("\'n", 1, 1, stdout) ;
fflush(stdout);
}
}
el se
{
conmmandl nst runent (i nst Sock, command);
}
}
el se
{

/* read a line from<stdin> */

while (gets(charBuf) != NULL)

{
if (!strlen(charBuf))
continue ;
if (*charBuf =="'#" || *charBuf =="'1")
continue ;

strcat (charBuf, "\n");

if ('quiet)
{

Chapter 2 107

Programming Examples
LAN Programming Examples

i f (nunber)

{
char nuni 10];
sprintf(num"%l: ", nunmber);
fwite(num strlen(nun), 1, stdout);

}

fwite(charBuf, strlen(charBuf), 1, stdout)

fflush(stdout);

if (isQuery(charBuf))

{
| ong buf Byt es;
/* Put the query response into the sanme buffer as the*/
/* command string appended after the null terminator.*/
buf Byt es = queryl nstrunent (i nst Sock, char Buf,
charBuf + strlen(charBuf) + 1,
I NPUT_BUF_SI ZE -strlen(charBuf));
if (lquiet)
{
fwite(" ", 2, 1, stdout)
fwite(charBuf + strlen(charBuf)+1l, bufBytes, 1, stdout);
fwite("\n", 1, 1, stdout)
fflush(stdout);
}
}
el se
{
commandl nstrument (i nst Sock, charBuf);
}

108

Chapter 2

Programming Examples
LAN Programming Examples

if (nunber) nunber ++;

if (show_errs) {

showEr r or s(i nst Sock) ;

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();

#el se
cl ose(i nst Sock) ;

#endi f /* WNSOCK */

return O;

/* End of lanio.cpp *

/**/

/* $Function: mainl$ */

/* $Description: Qutput a series of SCPI comrands to the signal generator */

/* Send query results to stdout. $ */
/* */
/* $Return: (int) . . . non-zero if an error occurs */
/* */

AR R R R R EEEEREEEEEEEEEEEEEREEEEEEEEEEEEREEEEEEREEEEEEEEREEEEEEEEEEEELY

/* Rename this int mainl() function to int nmain(). Re-conpile and the */

/* execute the program */

Chapter 2

109

Programming Examples
LAN Programming Examples

/**/

int mainl()

{

SOCKET i nst Sock;
| ong buf Byt es;
char *charBuf = (char *) malloc(!NPUT_BUF_SI ZE) ;

/***/

/* open a socket connection to the instrunent*/

/***/

#i f def W NSOCK
if (init_winsock() !'=0) {
exit(1);
}
#endi f /* W NSOCK */

i nst Sock = openSocket (" xxxxxx", SCPI_PORT); /* Put your hostnane here */
if (instSock == | NVALI D_SOCKET) {

fprintf(stderr, "Unable to open socket.\n");

return 1;

}

/* fprintf(stderr, "Socket opened.\n"); */

buf Byt es = querylnstrument (i nst Sock, "*IDN?\n", charBuf, |NPUT_BUF_SI ZE);
printf("ID %\n", charBuf);

conmandl nstrunent (i nst Sock, "FREQ 2.5 GHz\n");

printf("\n");

buf Byt es = queryl nstrument (i nst Sock, "FREQ CWP\n", charBuf, |NPUT_BUF_SI ZE);

110

Chapter 2

Programming Examples
LAN Programming Examples

printf("Frequency: %\n", charBuf);

comrandl| nstrunent (i nst Sock, "POWNAMPL -5 dBm n");

buf Byt es = queryl nstrument (i nst Sock, "PONAMPL?\n", charBuf, |NPUT_BUF_SI ZE);
printf("Power Level: %\n",charBuf);

printf("\n");

#i f def W NSOCK
cl osesocket (i nst Sock) ;
cl ose_wi nsock();

#el se
cl ose(i nst Sock) ;

#endi f /* WNSOCK */

return O;

}

/***

get opt (30) get opt (30)

PROGRAM FI LE NAME: getopt.c

getopt - get option letter from argunment vector

SYNCPSI S
int getopt(int argc, char * const argv[], const char *optstring);
extern char *optarg;

extern int optind, opterr, optopt;

PRORGAM DESCRI PTI ON:
getopt returns the next option letter in argv (starting fromargv[1])
that matches a letter in optstring. optstring is a string of

recogni zed option letters; if aletter is followed by a colon, the

Chapter 2 111

Programming Examples
LAN Programming Examples

option is expected to have an argunment that nmay or nay not be
separated fromit by white space. optarg is set to point to the start

of the option argunent on return from getopt.

getopt places in optind the argv index of the next argument to be
processed. The external variable optind is initialized to 1 before

the first call to the function getopt.

When all options have been processed (i.e., up to the first non-option
argunent), getopt returns EOF. The special option -- can be used to

delimt the end of the options; EOF is returned, and -- is skipped.

***/

#i ncl ude <stdio. h> /* For NULL, EOF */

#i ncl ude <string. h> /* For strchr() */

char *opt arg; /* d obal argunent pointer. */

int optind = 0; /* dobal argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

{

char c;

char *posn;

optarg = NULL;

if (scan == NULL || *scan == '"\0") {
if (optind == 0)

112

Programming Examples
LAN Programming Examples

opti nd++;

if (optind >= argc || argv[optind][0] !="-" || argv[optind][1l] ==
return(EOF);

if (strenp(argv[optind], "--")==0) {
opti nd++;

return(EOF);

scan = argv[optind] +1;

opti nd++;

C = *scan+t+;

posn = strchr(optstring, c); /* DDP */

if (posn == NULL || ¢ ==":") {
fprintf(stderr, "%: unknown option -%\n", argv[O0], c);

return('?');

}
posn++;
if (*posn == ":") {
if (*scan '="\0") {
optarg = scan;
scan = NULL;
} else {
optarg = argv[optind];
opti nd++;
}
}

"\0')

Chapter 2

113

Programming Examples
LAN Programming Examples

return(c);

}

Sockets LAN Programming Using PERL

This example uses PERL script to control the signal generator over the sockets LAN interface. The signal
generator frequency is set to 1 GHz, queried for operation complete and then queried for it's identify string.
This example was developed using PERL version 5.6.0 and requires a PERL version with the 10::Socket
library.

1. Inthe code below, enter your signal generator’s hostname in place of the xxxxx in the code line: ny
$i nst rument Name= “xxxxx”; .

2. Savethe code listed below using the filename | anper | .
3. Runthe program by typing per| | anper! atthe UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the ESG Documentation CD-ROM as perl.txt.
#! [usr/ bi n/ perl

PROGRAM NAME: perl .txt

Exanple of talking to the signal generator via SCPl-over-sockets

#

use | O : Socket ;

Change to your instrument's hostnane

ny $i nstrunment Nane = "xxxxx";

Cet socket

$sock = new | O : Socket:: I NET (Peer Addr => $i nstrunment Nane,
Peer Port => 5025,
Proto => "tcp',
)i

di e "Socket Could not be created, Reason: $!\n" unless $sock;

Set freq
print "Setting frequency...\n";
print $sock "freq 1 GHz\n";

114 Chapter 2

Programming Examples
LAN Programming Examples

Wait for conpletion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

ny $response = <$sock>;

chonp $response; # Renmoves new i ne from response
if ($response ne "1")

{

die "Bad response to '*OPC?' frominstrunent!\n";

Send identification query
print $sock "*IDN?\ n";
$response = <$sock>;

chonp $response;

print "lInstrument |ID: $response\n";

Sockets LAN Programming Using Java

In this exampl e the Java program connects to the signal generator via sockets LAN. This program requires
Javaversion 1.1 or later beinstalled on your PC. To run the program perform the following steps:

1. Inthe code example below, type in the hostname or | P address of your signal generator. For example,
String instrunment Nane = (your signal generator’s hostnane).

2. Copy the program as Scpi SockTest . j ava and saveit in aconvenient directory on your computer.
For example save thefiletothe C: \ j dk1. 3. 0_2\ bi n\j avac directory.

Launch the Command Prompt program on your computer. Click Start > Programs > Command Prompt.

4. Compilethe program. At the command prompt type: j avac Scpi SockTest . j ava.
The directory path for the Java compiler must be specified. For example:
C.\>j dk1l.3.0_02\bi n\javac Scpi SockTest.|ava

5. Runthe program by typing j ava Scpi SockTest at the command prompt.

6. Typeexit at the command prompt to end the program.

Chapter 2 115

Programming Examples
LAN Programming Examples

Generating a CW Signal Using Java

The following program example is available on the ESG Documentation CD-ROM as javaex.txt.

] R KKKk kR Kk ok kK K ok ok ok kK Kk ok kK K ok ok kR K ok ok kR ok ok Kk R R ok ok kR ok ok kR Rk R kR R Rk kK

/1 PROGRAM NAME: j avaex.txt
/1 Sanple java programto talk to the signal generator via SCPI-over-sockets

/1 This programrequires Java version 1.1 or |later.
/1 Save this code as Scpi SockTest.java

/1 Conpile by typing: javac Scpi SockTest.java

/1 Run by typing: java Scpi SockTest

/1 The signal generator is set for 1 GHz and queried for its id string

] R KKKk kR Kk ok kK K ok ok kK Kk ok kK K ok ok kK Kk ok kR R ok ok o kR ok ok ok kR R ok Rk R Rk R kR Rk kK

inmport java.io.*;
inport java.net.*;
cl ass Scpi SockTest
{
public static void main(String[] args)
{
String instrument Nane = "XXxxx"; /1 Put instrunent hostnanme here
try
{
Socket t = new Socket (i nstrunment Nane, 5025); // Connect to instrunent
/1l Setup read/wite nechanism
Buf feredWiter out =
new BufferedWiter(
new Qut put StreanWiter(t.getQutputStream()));
Buf f eredReader in =
new Buf f er edReader (
new | nput StreanReader (t.getlnputStrean()));
Systemout.println("Setting frequency to 1 GHz...");
out.wite("freq 1GHz\n"); /] Sets frequency

out.flush();

116 Chapter 2

Programming Examples
LAN Programming Examples

Systemout.println("Waiting for source to settle...");
out.wite("*opc?\n"); /1 Waits for conpletion
out.flush();

String opcResponse = in.readLine();

if (!opcResponse.equal s("1"))
{
Systemerr.printIn("lInvalid response to '*OPC?'I");

Systemexit(1l);

}

Systemout.println("Retrieving instrunent ID...");

out.wite("*idn?\n"); /1 Querys the id string

out.flush();

String i dnResponse = in.readLine(); /'l Reads the id string
/1 Prints the id string

Systemout.printlin("Instrument ID. " + idnResponse);

}

catch (1 OException e)

{

Systemout.printin("Error" + e);

Chapter 2 117

Programming Examples
RS-232 Programming Examples

RS-232 Programming Examples

“Interface Check Using Agilent BASIC” on page 118

“Interface Check Using VISA and C” on page 119

“Queries Using Agilent BASIC” on page 121

“QueriesUsing VISA and C” on page 122

Before Using the Examples
On the signal generator select the following settings:

» Baud Rate - 9600 must match computer’s baud rate
* RS-232 Echo - Off

Interface Check Using Agilent BASIC

This example program causes the signal generator to perform an instrument reset. The SCPI command * RST
will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is COM1
(Serial A on some computers). Refer to “Using RS-232" on page 28 for more information.

Watch for the signal generator’s Listen annunciator (L) and the ‘ remote preset...." message on the front panel
display. If there is no indication, check that the RS-232 cable is properly connected to the computer serial
port and that the manual setup listed above s correct.

If the compiler displays an error message, or the program hangs, it is possible that the program was typed
incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run the program. Refer to “If You Have
Problems’ on page 31 for more help.

The following program example is available on the ESG Documentation CD-ROM as rs232ex1.txt.

10 R R R R T T T T T T T T
20 !

30 I PROGRAM NAME: rs232ex1. txt

40 !

50 ! PROGRAM DESCRI PTION: This programverifies that the RS-232 connections and
60 ! interface are functional.

70 !

118 Chapter 2

Programming Examples
RS-232 Programming Examples

80 ! Connect the UNI X workstation to the signal generator using an RS-232 cable
90 !

100 !

110 ! Run Agilent BASIC, type in the followi ng conmands and then RUN t he program
120 !

130 !

LAQ D EFEEE Rk ko k ko k ko k ko k ko k ko k ko k ko k Kk kR kR kR kR kR Rk kR kR kR kR kR kR kR Rk
150 !

160 I NTEGER Num

170 CONTROL 9,0;1 ! Resets the RS-232 interface

180 CONTROL 9, 3; 9600 | Sets the baud rate to match the sig gen

190 STATUS 9, 4; St at ! Reads the value of register 4

200 Num=BI NAND(Stat,7) ! Gets the AND val ue

210 CONTROL 9, 4; Num I Sets parity to NONE
220 QUTPUT 9; " *RST" ! Qutputs reset to the sig gen
230 END I End the program

Interface Check Using VISA and C

This program uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional. In this example the COM2 port is used. The serial
portisreferred to in the VISA library as‘ASRL1" or ‘ASRL2" depending on the computer serial port you
are using. Launch Microsoft Visual C++, add the required files, and enter the following code into the .cpp
source file.

The following program example is available on the ESG Documentation CD-ROM as rs232ex1.cpp.
R R T R T T T T T
/1 PROGRAM NAME: rs232exl. cpp

/1

/1 PROGRAM DESCRI PTI ON: Thi s code exanple uses the RS-232 serial interface to

/1 control the signal generator.

/1

/'l Connect the conmputer to the signal generator using an RS-232 serial cable.

/1 The user is asked to set the signal generator for a 0 dBm power |evel

/1 A reset command *RST is sent to the signal generator via the RS-232

Chapter 2 119

Programming Examples
RS-232 Programming Examples

/1 interface and the power level will reset to the -135 dBm |l evel.The default
// attributes e.g. 9600 baud, no parity, 8 data bits,1 stop bit are used

/1 These attributes can be changed using VI SA functions.

/1

/1 | MPORTANT: Set the signal generator BAUD rate to 9600 for this test

] R KKk kR ok ok ok kK K ok ok kK Kk ok o kK K ok ok o kK ok ok ok kR R ok ok sk kR ok ok o sk kR ok ok R R ok ok R R R ok ok R R R ok ok kR Rk kK

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>
#i ncl ude " St dAf x. h"
#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

void main ()

{

int baud=9600;// Set baud rate to 9600
printf("Manual ly set the signal generator power level to O dBmn");
printf("\n");
printf("Press any key to continue\n");
getch();
printf("\n");
Vi Session defaul tRM vi;// Declares a variable of type Vi Session
/1 for instrunent communication on COM 2 port
Vi Status vi Status = 0;
/'l Opens session to RS-232 device at serial port 2
vi St at us=vi OpenDef aul t RM &def aul t RM ;
vi St at us=vi Open(defaul tRM "ASRL2::INSTR', VI _NULL, WVI_NULL, &vi);

if(viStatus){// If operation fails, pronpt user

120 Chapter 2

Programming Examples
RS-232 Programming Examples

printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}

/1 initialize device

vi St at us=vi Enabl eEvent (vi, VI _EVENT_| O COVPLETI ON, VI _QUEUE, VI _NULL);

viC ear(vi);// Sends device clear conmand

/1 Set attributes for the session

vi Set Attribute(vi, VI_ATTR ASRL_BAUD, baud) ;
vi Set Attribute(vi,VI_ATTR ASRL_DATA BI TS, 8);

viPrintf(vi, "*RST\n");// Resets the signal generator
printf("The signal generator has been reset\n");
printf("Power |evel should be -135 dBmin");
printf("\n");// Prints new line character to the display
vi C ose(vi);// C oses session

vi Cl ose(defaultRM;// C oses default session

}
Queries Using Agilent BASIC

This example program demonstrates signal generator query commands over RS-232. Query commands are
of thetype * 1 DN? and are identified by the question mark that follows the mnemonic.

Start Agilent BASIC, type in the following commands, and then RUN the program:
The following program example is available on the ESG Documentation CD-ROM as rs232ex2.txt.

10 R T R L T T Ts T
20 !

30 I PROGRAM NAME: rs232ex2. t xt

40 !

50 I PROGRAM DESCRI PTION: In this exanple, query comands are used to read

60 ! data fromthe signal generator.

70 !

Chapter 2 121

Programming Examples
RS-232 Programming Examples

80 I Start Agilent BASIC, type in the follow ng code and then RUN the program

90 !

I R R R T R T L T T T ST T
110 !

120 I NTEGER Num

130 DIM Str$[200], Str1$[20]

140 CONTROL 9,0;1 ! Resets the RS-232 interface

150 CONTROL 9, 3; 9600 | Sets the baud rate to match signal generator rate
160 STATUS 9, 4; St at ! Reads the value of register 4

170 Num=BI NAND(St at , 7) I Gets the AND val ue

180 CONTRCOL 9, 4; Num | Sets the parity to NONE

190 OUTPUT 9; " *| DN?" ! Querys the sig gen ID

200 ENTER 9; Str$! Reads the ID

210 WAIT 2 I Wiits 2 seconds

220 PRINT "ID =",Str$ I Prints IDto the screen

230 QUTPUT 9; "POW AMPL -5 dbn' ! Sets the the power level to -5 dbm

240 QUTPUT 9; " POWP" ! Querys the power level of the sig gen
250 ENTER 9; Str1$! Reads the queried val ue

260 PRI NT "Power = ", Strl$ I Prints the power level to the screen
270 END I End the program

Queries Using VISA and C

This example uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional . Launch Microsoft Visual C++, add the required
files, and enter the following code into your .cpp sourcefile.

The following program example is available on the ESG Documentation CD-ROM as rs232ex2.cpp.
R
/1

/1 PROGRAM NAME: rs232ex2. cpp

/1

/1 PROGRAM DESCRI PTI ON: This code exanple uses the RS-232 serial interface to control

/'l the signal generator.

122 Chapter 2

/1
/1
/1
/1
/1
/1
/1
/1
/1

Programming Examples
RS-232 Programming Examples

Connect the conputer to the signal generator using the RS-232 serial cable

and enter the following code into the project .cpp source file.

The program queries the signal generator ID string and sets and queries the power
level. Query results are printed to the screen. The default attributes e.g. 9600 baud
parity, 8 data bits,1 stop bit are used. These attributes can be changed using VI SA

functions

| MPORTANT: Set the signal generator BAUD rate to 9600 for this test

//**

#i ncl ude <vi sa. h>

#i ncl ude <stdio. h>

#i ncl ude " St dAf x. h"

#i ncl ude <stdlib. h>

#i ncl ude <coni o. h>

#def i ne MAX_COUNT 200

int main (void)

{

Vi Statusstatus; // Declares a type Vi Status variable

Vi Sessi ondefaul tRM instr;// Declares type Vi Session variabl es

ViU nt32retCount; // Return count for string I/O

Vi Char buf fer[MAX_COUNT] ;// Buffer for string I/0O

status = vi OpenDefaul t RM &defaultRM;// Initializes the system

/1

Open comuni cation with Serial Port 2

status = vi Open(defaul tRM "ASRL2::INSTR', VI_NULL, VI_NULL, & nstr);

Chapter 2 123

Programming Examples
RS-232 Programming Examples

if(status){// |If problenms, then pronpt user
printf("Could not open ViSession!\n");
printf("Check instruments and connections\n");
printf("\n");
exit(0);}
/1 Set timeout for 5 seconds
vi SetAttribute(instr, VI_ATTR TMO VALUE, 5000);
Il Asks for sig gen ID string
status = viWite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

/! Reads the sig gen response

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= '\0";// Indicates the end of the string
printf("Signal Generator ID: "); // Prints header for ID
printf(buffer);// Prints the ID string to the screen
printf("\n");// Prints carriage return

/1 Flush the read buffer

/1 Sets sig gen power to -5dbm

status = viWite(instr, (ViBuf)"PONAMPL -5dbm n", 15, &retCount);
/1 Querys the sig gen for power |evel

status = viWite(instr, (ViBuf)"PON\nNn",5, & et Count);

/1 Read the power |evel

status = vi Read(instr, (ViBuf)buffer, MAX_COUNT, &retCount);
buffer[retCount]= '\0";// Indicates the end of the string
printf("Power level = ");// Prints header to the screen
printf(buffer);// Prints the queried power |evel
printf("\n");

status = viC ose(instr);// Cose down the system

status = vi Cl ose(defaul tRM;

return O;

}

124 Chapter 2

3 Programming the Status Register System

This chapter provides the following major sections:

“Overview” on page 126

“ Status Register Bit Values’ on page 129

“Accessing Status Register Information” on page 130
“Status Byte Group” on page 135

“Status Groups’ on page 138

125

Programming the Status Register System
Overview

Overview

NOTE Some of the status bits and register groups do not apply to the E4428C:

» Standard Operation Condition Register bits (see Table 3-5 on page 142)

» Baseband Operation Status Group

» Data Questionable Condition Register bits (see Table 3-7 on page 148)

» Data Questionable Power Condition Register bit (see Table 3-8 on page 152)

» Data Questionable Frequency Condition Register bit (see Table 3-9 on page 155)

» Data Questionable Calibration Condition Register bit (see Table 3-11 on page 161)
» Data Questionable Bert Status Group

During remote operation, you may need to monitor the status of the signal generator for error conditions or
status changes. For more information on using the ESG’s SCPI commands to query the signal generator’s
error queue, refer to the ESG SCPI command reference guide, to see if any errors have occurred. An
alternative method uses the signal generator’s status register system to monitor error conditions, or condition
changes, or both.

The signal generator’s status register system provides two major advantages:

» You can monitor the settling of the signal generator using the settling bit of the Standard Operation
Status Group’s condition register.

* You can use the service request (SRQ) interrupt technique to avoid status polling, therefore giving a
speed advantage.

The signal generator’s instrument status system provides complete SCPI Standard data structures for
reporting instrument status using the register model.

The SCPI register model of the status system has multiple registersthat are arranged in a hierarchical order.
The lower-priority status registers propagate their data to the higher-priority registers using summary bits.
The Status Byte Register is at the top of the hierarchy and contains the status information for lower level
registers. The lower level registers monitor specific events or conditions.

The lower level status registers are grouped according to their functionality. For example, the Data Quest.
Frequency Status Group consists of five registers. This chapter may refer to a group as aregister so that the
cumbersome correct description is avoided. For example, the Standard Operation Status Group’s Condition
Register can be referred to as the Standard Operation Status register. Refer to “ Status Groups’ on page 138
for more information.

Figure 3-1 and Figure 3-2 show the signal generator’s status byte register system and hierarchy.

The status register system uses | EEE 488.2 commands (those beginning with *) to access the higher-level
summary registers. Lower-level registers can be accessed using STATus commands.

126 Chapter 3

Figure 3-1

Data Questionable Power Status Group

1Q Mod Cverdrive
Lowband Detector Fault <

Data Quest. Freq

10 MHz Ref Unlocked —
1 GHz Ref Unlocked o

Base

Sampler Loop Unlocked
¥O Loop Unlocked —

Data Quest. Modul
Mod 1 Undermod 41

Mod 2 Undermod —

Modulation Uncalibrated —

Data Quest. Calibration Status Group

QG Calibration Failure o

R.EP Tripped 4
Unleveled <

Unused S
Unused -
Unused 5
Unused -
Unused =
Unused 5
Unused 5
Unused —
Unused —
Unused -
Unused S
Always Zero (0) <

[y
R S e e s e R S R]

Synth. Unlocked -

band 1 Unlocked -
Unused -

Unused -
Unused o
Unused o
Unused 10
Unused 11
Unused =12
Unused 413
Unused 414
Always Zero (0) 415

OO?“-IOJLHJ‘-\NM—O'

Med 1 Overmod —
Med 2 Overmod —

Unused
Unused -
Unused —
Unused
Unused —
Unused 410
Unused 411
Unused 412
Unused 413
Unused 14
Always Zero (0) 4 15)

DEdOO W20

uéé%%&%éggéJ

DCFMDCIM
Zero Failure S

Unused
Unused
Unused —
Unused =
Unused
Unused
Unused =
Unused —
Unused =10
Unused 411
Unused o12]
Unused 13
Unused {14

000‘4001&{.0!’0-‘0'

(+1Trans Filter

(- 1Trans Filter

Event Register

Ve

nable Reg.

.
)

Programming the Status Register System

The Overall Status Byte Register System (1 of 2)

W

ency Status Group

Condition Register

(+)Trans Filter

{-)Trans Filter

Event Register
Event Enable Reg.

®_

ation Status Group

Condition Register

(#)Trans Filter

(-)Trans Filter
Event Register
Event Enable Reg

®_

egister

iiter

(- 1 Trans Filter

Condition

rans

+

Event Register

Event Enable Reg.
Tﬂ

Always Zero (0) 415

Data Quest. BERT Status Group
(Option UN7 & 300 only)

Mo Clock o

Mo Data Change —
PRES Sync Loss o
Unused -

Unused o

Unused -

Unused —

Unused <

Unused <

Unused <

Unused 410
Downconv.iDemod Out of Lock = 11

Demod DEP Ampl Out of Range 412

Sync. to BCHTCHIPDCH 413
Wiaiting for TCH/PDCH <14
Atways Zero (0) —{15]

Baseband Operation
(Option 001/601 an
Baseband 1 Busy —
Baseband 1 Communicating —
Unused =

Unused -

Unused —

Unused —

Unused =

Unused -

Unused =

Unused =

Unused =

Unused =

Unused —

Unused =

Unused -

00 0 O e L0 R D

R S e ey e R S R]

[Ny

5]
B4 Y S e)
EEEHH
3 g‘u_u_'s‘l’
mwwmﬁ
Acolc|cle|E
7 =l el I =
-:‘-“-‘5.&.
|]
e
[&] (]

Status Group

d 002/602)

g 5
=2 | | | D
SEE[EE
:E‘E‘&g
(=l b el FR 1T
e sl
5 <o (e
(o]]

Always Zero () 5

Overview

To Data Questionable Status Group #3

To Dota Questionable Status Group #5

To Dofo Quesfionable Stotus Group # 7

To Data Questionable Status Group #8

To Dota Questionable Status Group #12

To, Stendard Operation Status Group #10

Chapter 3

127

Programming the Status Register System

Overview

Figure 3-2

From Data Questionable Power Status Group
From Data Quest Frequency Status Group
From Data Quest Modulation Status Group

From Data Quest. Calibration Status Group

From Data Quest BERT Status Group

From Baseband Operation Status Group —

BE

stat-reg_2of2

The Overall Status Byte Register System (2 of 2)

Status Byte Register

Unused
Unused

Error/Event Queue Summary Bit

Data Questionable Status Summary Bit

Data Questionable

Status Group
Unused —
Unused —
Unused -

(summary) —

TEMPerature_|
{OVEN COLD)

[summary)—
Unused —

Waiting for TRIGer —

(summary) —]

@ o~ D ;s N = O

W

(summary)—
SELFtest
Unused =110
Unused—] 11
(summary)— 12
Unused—{ 13
Unused—] 14
Always Zero (0)— 15

Standard Event Status Group

COper. Complete <
Req. Bus Control -
Query Error -

Dev. Dep. Error -
Execution Error <
Command Error —
User Request -
Power Cn —

|"-IOIUI&1’.-)I\J—‘O

Standard Operation Status Group

1Q CALibrating—
Settling —
Unused —
SWEeping —
MEASuring —

Unused —
Unused —
Unused

DCEM/DCIM _|
Mullin Progress

Baseband is Busy—
Sweep Calculating—
RT SYNChronizing— 12

Unused— 13

Unused=— 14
Always Zero (0)—

Qo N ;s ® NSO

23 e
\W‘

RN

Message Available (MAV)
1
Std. Event Status Sum. Bit

|
Req. Serv. Sum. Bit (RQS)
I

Std. Operation Status Sum. Bit

Condition Register
(+)Trans Filter
(-)Trans Filter
Event Register

Event Enable Reg

5| 9
Bl
oo
o] 2

(1]
e
=
55
w}

|

-) Trans Filter
Event Register

Event Enable Reg
Q‘*)

(+)Trans Filter

0
1
2
3
4
5 A
6 4
7 i
1
1
1
1
A
®
p
\?‘]i
()
)
e
[

T1els|4)312)1]0

Service Request
Enable Register

128

Chapter 3

Programming the Status Register System
Status Register Bit Values

Status Register Bit Values

Each bit in aregister is represented by a decimal value based on its location in the register (see Table 3-1).

» Toenableaparticular bit in aregister, send its value with the SCPI command. Refer to the signal
generator’s SCPI command listing for more information.

» To enable more than one bit, send the sum of all the bits that you want to enable.

» To verify the bits set in aregister, query the register.

Example: Enable a Register
To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit 0 (1) and the decimal value of bit 6 (64) to give a decima value of 65.
2. Send the sum with the command: * ESE 65.

Example: Query a Register

To query aregister for a condition, send a SCPI query command. For example, if you want to query the
Standard Operation Status Group’s Condition Register, send the command:
STATus:OPERation: CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits=1) then the query will return the decimal value 140. The
value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

Table 3-1 Status Register Bit Decimal Values
. I o)) D N || N ™| -
Decimal 2 |8 |3 |2 é QS |||
Value = |
<
Bit Number |15 |14 |13 |12 |11 |10 |9 |8 |7 |6|5|4|3|2|1]0

NOTE Bit 15 is not used and is always set to zero.

Chapter 3 129

Programming the Status Register System
Accessing Status Register Information

Accessing Status Register Information

1. Determine which register contains the bit that reports the condition. Refer to Figure 3-1 on page 127 or
Figure 3-2 on page 128 for register location and names.

2. Send the unique SCPI query that reads that register.

3. Examinethe bit to see if the condition has changed.

Determining What to Monitor
You can monitor the following conditions:

e current signal generator hardware and firmware status
» whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers. These registers
represent the current state of the signal generator and are updated in real time. When the condition
monitored by a particular bit becomestrue, the bit setsto 1. When the condition becomes false, the bit resets
to 0.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded as an event.
The transitions can be positive to negative, negative to positive, or both. To monitor a certain condition,
enable the hit associated with the condition in the associated positive and negative registers.

Once you have enabled a bit viathe transition registers, the signal generator monitorsit for achangein its
condition. If this change in condition occurs, the corresponding bit in the event register will be set to 1.
When a bit becomes true (set to 1) in the event register, it stays set until the event register isread or is
cleared. You can thus query the event register for a condition even if that condition no longer exists.

The event register can be cleared only by querying its contents or sending the * CLS command, which clears
all event registers.
Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitorsit for a change in its condition. The transition registers
are preset to register positive transitions (a change going from 0 to 1). This can be changed so the selected
bit is detected if it goes from true to false (negative transition), or if either transition occurs.

130 Chapter 3

Programming the Status Register System
Accessing Status Register Information

Deciding How to Monitor

You can use either of two methods described below to access the information in status registers (both
methods allow you to monitor one or more conditions).

The polling method

In the polling method, the signal generator has a passive role. It tells the controller that conditions have
changed only when the controller asks the right question. Thisis accomplished by a program loop that
continually sends a query.

The polling method works well if you do not need to know about changes the moment they occur. Use
polling in the following situations:

— when you use a programming language/devel opment environment or /O interface that does not
support SRQ interrupts

— when you want to write a ssmple, single-purpose program and don’'t want the added complexity of
setting up an SRQ handler

The servicerequest (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more activerole. It
tells the controller when there has been a condition change without the controller asking.

Use the SRQ method if you must know immediately when a condition changes. (To detect a change
using the polling method, the program must repeatedly read the registers.) Use the SRQ method in the
following situations:

— when you need time-critical notification of changes

— when you are monitoring more than one device that supports SRQs
— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, 1/O interface, and programming environment must support SRQ interrupts (for
example: BASIC or VISA used with GPIB and VX1-11 over the LAN). Using this method, you must do the
following:

1

Determine which bit monitors the condition.

. Send commands to enable the bit that monitors the condition (transition registers).
. Send commands to enable the summary bits that report the condition (event enable registers).

2
3
4.
5

Send commands to enable the status byte register to monitor the condition.

Enable the controller to respond to service requests.

Chapter 3 131

Programming the Status Register System
Accessing Status Register Information

The controller responds to the SRQ as soon asit occurs. As aresult, the time the controller would otherwise
have used to monitor the condition, asin aloop method, can be used to perform other tasks. The application
determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the RQS hit in the status byte register is set.
In order for the controller to respond to the change, the Service Regquest Enable Register needs to be enabled
for the hit(s) that will trigger the SRQ.

Generating a Service Request

The Service Request Enable Register lets you choose the bits in the Status Byte Register that will trigger a
service request. Send the * SRE <num> command where <num> is the sum of the decimal values of the bits
you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard Operation Status
register summary bit isset to 1, aservice request is generated) send the command * SRE 128. Refer to Figure
3-1 on page 127 or Figure 3-2 on page 128 for bit positions and values.

The query command * SRE? returns the decimal value of the sum of the bits previously enabled with the
*SRE <num> command.

To query the Status Byte Register, send the command * STB?. The response will be the decimal sum of the
bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal sum will be 136 (bit 7=128 and
bit 3=8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at atime can set
the RQS bit. All bitsthat are asserting an SRQ will be read as part of the status byte when it
isqueried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte's RQS hit to 1. Both actions are necessary to
inform the controller that the signal generator requires service. Asserting SRQ informs the controller that
some device on the bus requires service. Setting the RQS bit allows the controller to determine which signal
generator requires service.

This processisinitiated if both of the following conditions are true:

» The corresponding bit of the Service Request Enable Register isalso set to 1.
» Thesignal generator does not have a service request pending.

A servicerequest is considered to be pending between the time the signal generator’s SRQ processis
initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should instruct the controller
to perform a serial poll when SRQ is true. Each device on the bus returns the contents of its status byte
register in response to this poll. The device whose request service summary bit (RQS) bit is set to 1 isthe
device that requested service.

132 Chapter 3

Programming the Status Register System
Accessing Status Register Information

NOTE When you read the signal generator’s Status Byte Register with a serial poll, the RQSbit is
reset to 0. Other bitsin the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement and the mode
set to continuous, restarting the measurement (INIT command) can cause the measuring bit
to pulse low. This causes an SRQ when you have not actually reached the “end-of-sweep”
or measurement condition. To avoid this, do the following:

1. Sendthecommand | NI Ti at e: CONTi nuous OFF.
2. Set/enable the status registers.
3. Restart the measurement (send INIT).

Status Register SCPI Commands

Most monitoring of signal generator conditionsis done at the highest level, using the IEEE 488.2 common
commands listed below. You can set and query individual status registers using the commandsin the STATus
subsystem.

*CLS(clear status) clearsthe Status Byte Register by emptying the error queue and clearing all the event
registers.

*ESE, * ESE? (event status enable) sets and queriesthe bitsin the Standard Event Enable Register which
is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register which is part of the
Standard Event Status Group.

*OPC, * OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1 when all
commands have completed. The query stops any new commands from being processed until the current
processing is complete, then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service Request Enable
Register, the Standard Event Status Enable Register, and device-specific event enable registers at power
on. The query returns the flag setting from the * PSC command.

*SRE, * SRE? (service request enable) sets and queries the value of the Service Request Enable Register.
*STB? (status byte) queries the value of the status byte register without erasing its contents.

:STATus:PRESet presets all transition filters, non-1EEE 488.2 enable registers, and error/event queue
enable registers. (Refer to Table 3-2.)

Chapter 3 133

Programming the Status Register System
Accessing Status Register Information

Table 3-2 Effects of :STATus:PRESet
Register Value after
:STATus:PRESet

:STATus.OPERation:ENABIle 0
:STATus.OPERation:NTRansition 0
:STATus.OPERation: PTRransition 32767
:STATus.OPERation:BA Seband:ENABIe 0
:STATus. OPERation:BA Seband:NTRansition 0
:STATus.OPERation:BA Seband: PTRransition 32767
:STATus.QUEStionable:CAL ibration:ENABIle 32767
:STATus.QUEStionable:CAL ibration:NTRansition 32767
:STATus.QUEStionable:CAL ibration:PTRansition 32767
:STATus.QUEStionable:ENABIe 0
:STATus.QUEStionable:NTRansition 0
:STATus.QUEStionable:PTRansition 32767
:STATus.QUEStionable:FREQuency:ENABIe 32767
:STATus:QUEStionable:FREQuency:NTRansition 32767
:STATus: QUEStionable: FREQuency:PTRansition 32767
:STATus.QUEStionable:MODulation:ENABIle 32767
:STATus.QUEStionableMODulation:NTRansition 32767
:STATus.QUEStionable:MODulation:PTRansition 32767
:STATus.QUEStionable:POWer:ENABIe 32767
:STATus.QUEStionable:POWer:NTRansition 32767
:STATus.QUESti onable:POWer:PTRansition 32767
:STATus.QUEStionable:BERT:ENABIe 32767
:STATus.QUEStionable:BERT:NTRansition 32767
:STATus.QUEStionable:BERT:PTRansition 32767

134 Chapter 3

Status Byte Group

The Status Byte Group includes the Status Byte Register and the Service Request Enable Register.

Programming the Status Register System
Status Byte Group

Status Byte Register

0

Njojlo|d|lw|d|—=

Unused

Unused

Error/Event Queue Summary Bit

Data Questionable Summary Bit

Message Available (MAV)

Standard Event Summary Bit

Request Service (RQS)

Operation Status Summary Bit

gy g g gy a9

-
Lt

N P{x)-

Service Request Enable Register

ck721a

Chapter 3

135

Programming the Status Register System
Status Byte Group

Status Byte Register

Table 3-3 Status Byte Register Bits
Bit | Description
0,1 | Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1in thisbit position indicates that the SCPI error queue is not empty.
The SCPI error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in thisbit position indicates that the Data Questionable
summary bit has been set. The Data Questionable Event Register can then be read to determine the specific
condition that caused this bit to be set.

4 M essage Available. A 1 in this bit position indicates that the signal generator has data ready in the output
queue. There are no lower status groups that provide input to this hit.

5 Sandard Event Satus Summary Bit. A 1in thishit position indicates that the Standard Event summary bit
has been set. The Standard Event Status Register can then be read to determine the specific event that caused
this bit to be set.

6 Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least
one reason to require service. Thishit isalso called the Master Summary Status bit (MSS). Theindividua bits
in the Status Byte are individually ANDed with their corresponding service request enable register, then each
individual bit value is ORed and input to this bit.

7 Sandard Operation Satus Summary Bit. A 1in this bit position indicates that the Standard Operation
Status Group's summary bit has been set. The Standard Operation Event Register can then be read to
determine the specific condition that caused this bit to be set.

Query: *STB?
Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.
Example: The decimal value 136 is returned when the MSS bit is set low (0).
Decimal sum =128 (bit 7) + 8 (bit 3)
The decimal value 200 is returned when the MSS bit is set high (1).
Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS hit)
136 Chapter 3

Programming the Status Register System
Status Byte Group

Service Request Enable Register

The Service Request Enable Register lets you choose which bitsin the Status Byte Register trigger a service

request.

*SRE <dat a>

Example:

Query:
Response:

<dat a> isthe sum of the decimal values of the bits you want to enable except bit 6. Bit 6
cannot be enabled on this register. Refer to Figure 3-1 on page 127 or Figure 3-2 on
page 128.

To enable bits 7 and 5 to trigger a service request when either corresponding status group
register summary bit setsto 1. Send the command * SRE 160 (128 + 32).

* SRE?

The decimal value of the sum of the bits previously enabled with the* SRE <dat a>
command.

Chapter 3

137

Programming the Status Register System

Status Groups

Status Groups

The Standard Operation Status Group and the Data Questionable Status Group consist of the registers listed
below. The Standard Event Status Group is similar but does not have negative or positive transition filters or

acondition register.

Condition
Register

Negative
Transition
Filter

Positive
Transition
Filter

Event
Register

Event
Enable
Register

A condition register continuoudly monitors the hardware and firmware status of the
signal generator. Thereis no latching or buffering for a condition register; it is updated
inreal time.

A negative transition filter specifies the bits in the condition register that will set
corresponding bitsin the event register when the condition bit changes from 1 to 0.

A positive transition filter specifies the bits in the condition register that will set
corresponding bitsin the event register when the condition bit changes from O to 1.

An event register latches transition events from the condition register as specified by the
positive and negative transition filters. Once the bits in the event register are set, they
remain set until cleared by either querying the register contents or sending the* CLS
command.

An enable register specifies the bitsin the event register that generate the summary bit.
The signal generator logically ANDs corresponding bitsin the event and enable
registers and ORs all the resulting bits to produce a summary bit. Summary bits are, in
turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status summary bits.
In each status group, corresponding bits in the condition register are filtered by the negative and positive
transition filters and stored in the event register. The contents of the event register arelogically ANDed with
the contents of the enable register and the result islogically ORed to produce a status summary bit in the
Status Byte Register.

138

Chapter 3

Programming the Status Register System
Status Groups

Standard Event Status Group

The Standard Event Status Group is used to determine the specific event that set bit 5 in the Status Byte
Register. This group consists of the Standard Event Status Register (an event register) and the Standard
Event Status Enable Register.

Operation Complete

Request Bus Control

Query Error

Device Dependent Error

Execution Error
Command Error

User Request

Power On
l Y VY VY YVYY
3 2 1 O

Event Register 7 6 5 4

Event
Engle Register 7 6 5 4 38 2

vy To Status Byte Register Bit #5 ok728a

Chapter 3 139

Programming the Status Register System
Status Groups

Standard Event Status Register

Table 3-4 Standard Event Status Register Bits
Bit | Description
0 Operation Complete. A 1in thisbit position indicates that all pending signal generator operations were

completed following execution of the * OPC command.

1 Request Control. Thisbit is aways set to 0. (The signal generator does not request control.)

2 Query Error. A 1inthishit position indicates that a query error has occurred. Query errors have SCPI error
numbers from —499 to —-400.

3 Device Dependent Error. A 1inthisbit position indicates that a device dependent error has occurred. Device
dependent errors have SCPI error numbers from =399 to =300 and 1 to 32767.

4 Execution Error. A 1inthishit position indicatesthat an execution error has occurred. Execution errors have
SCPI error numbers from —299 to —200.

5 Command Error. A 1inthisbit position indicates that acommand error has occurred. Command errors have
SCPI error numbers from =199 to —100.

6 User Request Key (Local). A 1in this bit position indicates that the Local key has been pressed. Thisistrue
even if the signal generator isin local lockout mode.

7 Power On. A 1in thisbit position indicates that the signal generator has been turned off and then on.

Query: * ESR?
Response: The decimal sum of the bitsset to 1

Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event Status Register
set the summary hit (bit 5 of the Status Byte Register) to 1.

*ESE <dat a> <dat a> isthe sum of the decimal values of the bits you want to enable.

Example: To enable hit 7 and bit 6 so that whenever either of those bits are set to 1, the Standard
Event Status summary bit of the Status Byte Register is set to 1. Send the command * ESE
192 (128 + 64).

Query: * ESE?
Response: Decimal value of the sum of the hits previously enabled with the* ESE <dat a>
command.

140

Chapter 3

Programming the Status Register System
Status Groups

Standard Operation Status Group

NOTE Some of the bitsin this status group do not apply to the E4428C and will return azero when
queried. See Table 3-5 on page 142 for more information.

The Operation Status Group is used to determine the specific event that set bit 7 in the Status Byte Register.
This group consists of the Standard Operation Condition Register, the Standard Operation Transition Filters
(negative and positive), the Standard Operation Event Register, and the Standard Operation Event Enable
Register.

1/Q CALibrating
Settling
Unused
SWEeping
MEASuring
Waiting for TRIGger
Unused
Unused
Unused
DCFM/DCHM Null in Progress
Baseband is busy
SWEep Calculating
BERT SYNChronizing
Unused

Unused

Always Zero (0)

Y ¥ ¥ ¥ ‘Y Y Y YYYYYVY Y
e eration 115 14 13 12 1110 9 8 7 6 54 3 2 1 0|
Erot}r?ﬁfier:ni::fﬁon |1+5 1+4 1+3 1+2 1+1 10 : : i i : j i 1 t|
S SR
Evant Regmer " [15 1+4 1+3 1+2 1 1?) : : g g : j g 1 g|

&

&

&

@

- r

Standard Operation

Event
Enable Register 1514 13 12 11 10 9 8 7 6 5 4 3

¥ To Status Byte Register Bit #7

e
2
e
)t
=t
g
r\)—b@n—m la— ro [a— ro fa— no
— [| =

-
o

Chapter 3 141

Programming the Status Register System

Status Groups

Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Table 3-5 Standard Operation Condition Register Bits
Bit Description
02 1/Q Calibrating. A 1in this position indicates an I/Q calibration isin process.
1 Settling. A 1inthishit position indicates that the signal generator is settling.
2 Unused. This bit position is set to 0.
3 Sweeping. A 1in thisbit position indicates that a sweep isin progress.
42 Measuring. Al in thisbit position indicates that a bit error rate test isin progress
5 Waiting for Trigger. A 1in thisbit position indicates that the sourceisin a“wait for trigger” state.
When option 300 is enabled, a1 in this bit position indicates that TCH/PDCH synchronization is
established and waiting for atrigger to start measurements.
6,7,8 Unused. These bits are always set to 0.
9 DCFM/DC@M Null in Progress. A 1in this bit position indicates that the signal generator is
currently performing a DCFM/DC®M zero calibration.

102 Baseband isBusy. A 1inthishit position indicates that the baseband generator is communicating or
processing. Thisisasummary bit. See the “ Baseband Operation Status Group” on page 144 for more
information.

11 Sweep Calculating. A 1 in this bit position indicates that the signal generator is currently doing the
necessary pre-sweep calculations.

122 BERT Synchronizing. A 1inthishit position is set while the BERT is synchronizing to ‘BCH’, then
‘TCH’ and thento ‘PRBS'.

12, 13, 14 Unused. These bits are always set to 0.

15 Always 0.

a. On the E4428C, this bit is set to 0.

Query:

STATus: CPERat i on: CONDi ti on?

Response: The decimal sum of the bitsset to 1

Example: The decimal value 520 is returned. The decimal sum =512 (bit 9) + 8 (bit 3).

142

Chapter 3

Programming the Status Register System
Status Groups

Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changesin the condition register
set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands:

Queries:

STATus: CPERat i on: NTRansi ti on <val ue> (negative transition), or
STATus: CPERat i on: PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

STATus: CPERat i on: NTRansi ti on?
STATus: CPERat i on: PTRansi ti on?

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register as specified by
thetransition filters. Event registers are destructive read only. Reading data from an event register clearsthe
content of that register.

Query:

STATus: CPERat i on[: EVENt] ?

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard Operation Event
Register set the summary bit (bit 7 of the Status Byte Register) to 1

Command:

Example:

Query:
Response:

STATus: CPERat i on: ENABI e <val ue>, where
<val ue>isthe sum of the decimal values of the bits you want to enable.

To enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Standard
Operation Status summary bit of the Status Byte Register is set to 1. Send the command
STAT: OPER ENAB 520 (512 + 8).

STATus: CPERat i on: ENABI e?

Decimal value of the sum of the bits previoudly enabled with the
STATus: OPERat i on: ENABI e <val ue> command.

Chapter 3

143

Programming the Status Register System

Status Groups

Baseband Operation Status Group

NOTE

This status group does not apply to the E4428C, and if queried will return a zero.

The Baseband Operation Status Group is used to determine the specific event that set bit 10 in the Standard
Operation Status Group. This group consists of the Baseband Operation Condition Register, the Baseband
Operation Transition Filters (negative and positive), the Baseband Operation Event Register, and the
Baseband Operation Event Enable Register.

®

Baseband 1 Busy

Baseband 1 Communicating

Unused
Unused

Unused

Unused

Unused

Unused
Unused

Unused

Unused

Unused

Unused
Unused
Unused

Always Zero (0)
_l Y

\

. YyYYyY Y v YYYvYvYYYYY
Baseband Operation/15 14 13 12 11 10 9 8 7 6 54 3 2 1 0|
Baseband Operation + * * + + + + * + + + + +
Positive " "'|15 1413 12 1110 987 654 3 2 1 0
REEEREEXETEIEEXEXEY
gﬁzﬁizdfl"mmhs 1413 12 1110 987 654 3 2 1 0|
ransition Filter
EEEEEEEIEIEEXEER
Baeband Operation|is 14 13 12 11 10 98 7 6 5 4 3 2 1 0|
5 ¥ })
\.& &
&
& o Y v ‘
®Xy
OFoy
a0 651!'
r mCey
Baseband Operation] f
Event 15141312111098?6543210‘
Enable Register
I To Operation Status Register Bit #10 ck7120

144

Chapter 3

Programming the Status Register System
Status Groups

Baseband Operation Condition Register

The Baseband Operation Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Table 3-6 Baseband Operation Condition Register Bits
Bit Description
0 Baseband 1 Busy. A 1 in this position indicates the signal generator baseband is active.
1 Baseband 1 Communicating. A 1 in this bit position indicates that the signal generator baseband
generator is handling data 1/O.
2-14 Unused. This bit position is set to 0.
15 Always 0.
Query: STATus: CPERat i on: BASeband: GONDi t i on?

Response: The decimal sum of the bits set to 1

Example: The decimal value 2 isreturned. The decimal sum = 2 (bit 1).

Baseband Operation Transition Filters (negative and positive)

The Baseband Operation Transition Filters specify which types of bit state changes in the condition register
set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: CPERat i on: BASeband: NTRansi ti on <val ue> (negative transition), or
STATus: CPERat i on: BASeband: PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

Queries: STATus: CPERat i on: BASeband: NTRansi ti on?
STATus: CPERat i on: BASeband: PTRansi ti on?

Chapter 3 145

Programming the Status Register System
Status Groups

Baseband Operation Event Register

The Baseband Operation Event Register latches transition events from the condition register as specified by
thetransition filters. Event registers are destructive read only. Reading data from an event register clearsthe
content of that register.

Query: STATus: CPERat i on: BASeband[: EVENL] ?

Baseband Operation Event Enable Register

The Baseband Operation Event Enable Register |ets you choose which bitsin the Baseband Operation Event
Register can set the summary bit (bit 7 of the Status Byte Register).

Command: STATus: CPERat i on: BASeband: ENABl e <val ue>, where
<val ue>isthe sum of the decimal values of the bits you want to enable.

Example: To enable bit 0 and bit 1 so that whenever either of those bits are set to 1, the Baseband
Operation Status summary bit of the Status Byte Register is set to 1. Send the command
STAT: OPER ENAB 520 (512 + 8).

Query: STATus: CPERat i on: BASeband: ENAB| e?

Response: Decimal value of the sum of the bits previoudly enabled with the
STATus: OPERat i on: BASeband: ENABI e <val ue> command.

146 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Status Group

NOTE Some of the bitsin this status group do not apply to the E4428C and will return azero when
queried. See Table 3-7 on page 148 for more information.

The Data Questionable Status Group is used to determine the specific event that set bit 3 in the Status Byte
Register. This group consists of the Data Questionable Condition Register, the Data Questionable Transition
Filters (negative and positive), the Data Questionable Event Register, and the Data Questionable Event
Enable Register.

Unused
Unused
Unused
POWer (summatry)
TEMPerature (OVEN COLD)
FREQuency (summary)
Unused
MODulation (summary)
CALibration (summary)
SELFtest
Unused
Unused
BERT (summary)
Unused

Unused

Always Zero (0)

<
<
<
d
<
<
<%
<

Y Y Y VY
Data QUEStionable
Condition Register I 15 14 13 12 11 10

YYVYVY

15 14 13 12 11 10
YV YVVVY
15 14

13 12 11 10

Data QUEStionable
Positive I
Transition Filter

Data QUEStionable
Negative |
Transition Filter

Data QUEStionable
Data CUEStionable | 15 14 13 12 11 10

&
% %
{&
& =0
Y
& @

R0
Ro
Ro
© (4 © e © {a ©
© (g ® |4 © |4 @
AN RN I N .
ol ol o e o |«
S O e O e O [o
(@) I R = I T N
=) w |l | w0 [w
oo | o [D [o [
oleoleo e o

Data QUEStionable

Event
Enable Register |15 14 13 12 11 10 9 8 7 6 5 4 3

= =] = [=]
o\t
Ro

o

Y To Status Byte Register Bit #3 k722K

Chapter 3 147

Programming the Status Register System

Status Groups

Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Table 3-7

Data Questionable Condition Register Bits

Bit

Description

0,12

Unused. These hits are always set to 0.

3

Power (summary). Thisisasummary bit taken from the QUESti onable:POWer register. A 1 inthishit
position indicates that one of the following may have happened: The ALC (Automatic Leveling
Control) is unable to maintain aleveled RF output power (i.e., ALCis UNLEVELED), the reverse
power protection circuit has been tripped. See the “ Data Questionable Power Status Group” on

page 151 for more information.

Temperature (OVEN COLD). A 1inthisbit position indicates that the internal reference oscillator
(reference oven) is cold.

Frequency (summary). Thisisasummary bit taken from the QUEStionable:FREQuency register. A 1
in this bit position indicates that one of the following may have happened: synthesizer PLL unlocked,
10 MHz reference VCO PLL unlocked, 1 GHz reference unlocked, sampler, Y O loop unlocked or
baseband 1 unlocked. For more information, see the “ Data Questionable Frequency Status Group” on
page 154.

Unused. Thishitisalways set to 0.

Modulation (summary). Thisisasummary bit taken from the QUEStionable:M ODulation register. A
linthisbit position indicates that one of the following may have happened: modulation source 1
underrange, modulation source 1 overrange, modulation source 2 underrange, modulation source 2
overrange, modulation uncalibrated. See the “ Data Questionable Modulation Status Group” on

page 157 for more information.

8&

Calibration (summary). Thisis asummary bit taken from the QUEStionable:CALibration register. A
1inthis bit position indicates that one of the following may have happened: an error has occurred in
the DCFM/DC®M zero calibration, an error has occurred in the 1/Q calibration. See the “Data
Questionable Calibration Status Group” on page 160 for more information.

Self Test. A 1inthisbit position indicates that a self-test has failed during power-up. This bit can only
be cleared by cycling the signal generator’s line power. * CLS will not clear this bit.

10, 11

Unused. These bits are always set to 0.

12b

BERT (summary). Thisisasummary bit taken from the QUEStionable:BERT register. A 1 in this bit
position indicates that one of the following occurred: no BCH/TCH synchronization, no data change,
no clock input, PRBS not synchronized, demod/DSP unlocked or demod unleveled. See the “Data
Questionable BERT Status Group” on page 163 for more information.

148

Chapter 3

Programming the Status Register System
Status Groups

Table 3-7 Data Questionable Condition Register Bits

Bit Description

13,14 Unused. These bitsare set to 0.

15 Always 0.

a. On the E4428C, this bit applies only to the DCFM/DC®M calibration.
b. On the E4428C, this bit is set to 0.
Query: STATus: QUESt i onabl e: CONDi ti on?
Response: The decimal sum of the bitsset to 1

Example: The decimal value 520 is returned. The decimal sum =512 (bit 9) + 8 (bit 3).

Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the condition register set
corresponding bitsin the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: NTRansi ti on?
STATus: QUESt i onabl e: PTRansi ti on?
Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as specified by
thetransition filters. Event registers are destructive read-only. Reading data from an event register clearsthe
content of that register.

Query: STATus: QUESti onabl e[: EVENt] ?

Chapter 3 149

Programming the Status Register System
Status Groups

Data Questionable Event Enable Register

The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable Event
Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command: STATus: QUESt i onabl e: ENABI e <val ue>command where <val ue> isthe sum of the
decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Status summary bit of the Status Byte Register is set to 1. Send the command
STAT: QUES: ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: ENAB| e?

Response: Decimal value of the sum of the bits previoudly enabled with the
STATus: QUESt i onabl e: ENABI e <val ue> command.

150 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Power Status Group

NOTE There are two conditions when a bit from this status group does not apply and returns azero
when queried. For more information, see Table 3-8 on page 152.

The Data Questionable Power Status Group is used to determine the specific event that set bit 3 in the Data
Questionable Condition Register. This group consists of the Data Questionable Power Condition Register,
the Data Questionable Power Transition Filters (negative and positive), the Data Questionable Power Event
Register, and the Data Questionable Power Event Enable Register.

Reverse Power Protection Tripped
Unleveled

1Q Mod Overdrive
Lowband Detector Fault
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Unused
Unused ——
Always Zero (0) —l

Data QUEStionable Y VV V VY
POWer
Condition Register |15 413 12 11 10

Data QUEStionable + + + + + +

POWer [15 14 13 12 11 10

Positive
ets AUESonatle 4 ¥ ¥ ¥ ¥ ¥
POWer [15 14 13 12 1 10
Negative

Transition Filter + + + + + +

Powe 1o 115 14 13 12 11 10

Event Register

<
<

<
<
<
>
d
-t

O4{O|4{O %o«

N [N[N N [

© |4 © |4 © & ©
O (g O |— O [O |l
~N e N N e~
R0 O [O [4 O [4 O [«
% O | 01 | O
(o)t Dol DD
) W e w0 [W (e w
S,] | e
R0

&
&

&

&

&
&

G

Data QUEStionable
POWer

Event 15 14 13 12 1 10 9 8 7 6 5 4 3
Enable Register

N e
o

Y To Data Questionable Status Register Bit #3 ck704c

Chapter 3 151

Programming the Status Register System
Status Groups

Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 3-8 Data Questionable Power Condition Register Bits

Bit Description

02 Rever se Power Protection Tripped. A 1in this bit position indicates that the reverse power protection
(RPP) circuit has been tripped. There is no output in this state. Any conditions that may have caused the
problem should be corrected. The RPP circuit can be reset by sending the remote SCPI command:
OUTput:PROTection:CL Ear. Resetting the RPP circuit bit, will reset this bit to O.

1 Unleveled. A 1in this bit indicates that the output leveling loop is unable to set the output power.

ob 1Q Mod Overdrive. A 1inthisbit indicates that the signal level into the |Q modulator is too large.

3 Lowband Detector Fault. A 1 inthisbit indicates that the lowband detector heater circuit has failed.

2-14 | Unused. These bitsare dways set to 0.

15 Always 0.

a. On the E4428C/38C with Option 506, this bit is set to 0.
b. On the E4428C, this bit is set to 0.
Query: STATus: QUESt i onabl e: PONér: CONDi t i on?

Response: The decimal sum of the bitsset to 1

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: POMr : NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: POMr : PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: POAér : NTRansi ti on?
STATus: QUESt i onabl e: POAér : PTRansi ti on?

152 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Query: STATus: QUESti onabl e: PONer[: EVENL] ?

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bitsin the Data Questionable
Power Event Register set the summary bit (bit 3 of the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: POAer : ENABI e <val ue>command where <val ue> isthesum
of the decimal values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Power summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: PON ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: PONér : ENAB| e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: PONer : ENABI e <val ue> command.

Chapter 3 153

Programming the Status Register System

Status Groups

Data Questionable Frequency Status Group

NOTE

A bit in this status group does not apply to the E4428C and will return a zero when queried.
See Table 3-9 on page 155 for more information.

The Data Questionable Frequency Status Group is used to determine the specific event that set bit 5 in the
Data Questionable Condition Register. This group consists of the Data Questionable Frequency Condition
Register, the Data Questionable Frequency Transition Filters (negative and positive), the Data Questionable

Frequency Event Register, and the Data Questionable Frequency Event Enable Register.

Unused

Synthesizer Unlocked
10 MHz Reference Unlocked
1 GHz Reference Unlocked

Baseband 1 Unlocked

Sampler Loop Unlocked
YO Loop Unlocked

Unused

Unused

Unused
Unused

Unused

Unused
Unused
Unused

Always Zero (0) —l
Data QUEStionable Yy vy

Y Y YYYYYYYYYY
FREQuency [15 14 13 12 1110 9 8 7 6 54 3 2 1 0|
ondition Register
DataQUEStionable ¥ ¥ ¥ ¥ ¥ ¥ Y YY Y Y VY YV
FREQuency [15 121312 1110987654321 0]
Transition Filter + + + + + + ++ + + + + + + +
Data QUEStionabl
Egsatuencvmna ‘M5 1418 12 11109687 65 43 21 0|
legaltive
Transitonfiter ¢ 4 4 ¥ § Y Y YAV VYV VIV
Phtcnancy ™15 14 13 12 1110 98 7 6 5 4 3 2 1 0|
Event Register
8
&
& &
W a0 5 Y
© /‘; Y
A=y 1
y mle
Data QUEStionable
FREQuency | ?
Event 151413 12 1110 987 654 3 21 0|
Enable Register
To Data Questionable Status Register Bit #5 ck708g

154

Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read-only.

Table 3-9 Data Questionable Frequency Condition Register Bits

Bit Description

0 Synth. Unlocked. A 1 inthisbit indicates that the synthesizer is unlocked.

1 10 MHz Ref Unlocked. A 1 in this bit indicates that the 10 MHz reference signal is unlocked.

2 1 Ghz Ref Unlocked. A 1inthisbit indicates that the 1 Ghz reference signal is unlocked.

32 Baseband 1 Unlocked. A 1 in this bit indicates that the baseband 1 generator is unlocked.

4 Unused. Thishit isset to 0.

5 Sampler Loop Unlocked. A 1in thisbit indicates that the sampler loop is unlocked.

6 YO Loop Unlocked. A 1 in this bit indicates that the YO loop is unlocked.

7-14 | Unused. These bitsare dways set to 0.

15 Always 0.

a. On the E4428C, this bit is set to 0.

Query: STATus: QUESt i onabl e: FREQuency: CONDi ti on?

Response: The decimal sum of the bitsset to 1

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in the event
register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: FREQuency: NTRansi ti on <val ue> (negative transition) or
STATus: QUESt i onabl e: FREQuency: PTRansi ti on <val ue> (positive transition)
where <val ue> isthe sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: FREQuency: NTRansi ti on?
STATus: QUESt i onabl e: FREQuency: PTRansi ti on?

Chapter 3 155

Programming the Status Register System
Status Groups

Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters. Event registers are
destructive read-only. Reading data from an event register clears the content of that register.

Query: STATus: QUESt i onabl e: FREQuency[: EVENt] ?

Data Questionable Frequency Event Enable Register

L ets you choose which bits in the Data Questionabl e Frequency Event Register set the summary bit (bit 5 of
the Data Questionable Condition Register) to 1.

Command: STATus: QUESt i onabl e: FREQuency: ENAB| e <val ue>, where <val ue> isthe sum of
the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: FREQ ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: FREQuency: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: FREQuency: ENABI e <val ue> command.

156 Chapter 3

Programming the Status Register System

Data Questionable Modulation Status Group

Status Groups

The Data Questionable Modulation Status Group is used to determine the specific event that set bit 7 in the
Data Questionable Condition Register. This group consists of the Data Questionable M odulation Condition

Register, the Data Questionable Modulation Transition Filters (negative and positive), the Data
Questionable Modulation Event Register, and the Data Questionable Modulation Event Enable Register.

Y

Modulation 1 Undermod
Modulation 1 Overmod
Modulation 2 Undermod
Modulation 2 Overmod
Modulation Uncalibrated

Unused

Unused
Unused

Unused

Unused

Unused
Unused

Unused

Unused
Unused

Always Zero (0) —l
Data QUEStionable Yy Y VY Y

Y Y Y YYYYYYYY
MOD i
MODiation er |15 14 13 12 1110 987 654 3 2 1 0
Y e N EETEEEEEE Y
MODulation
Posiive [15 14 13 12 11 10 987 6 54 3 2 1 0 |
ransition Fiiter
DataGUEStionacle ¥ ¥ ¥ ¥ ¥ Y Y YY VY YV VVY
NODuation [514 1312 1110987654321 0|
Transition Filter EEEEEETEEEEEEE
E%%ﬁgffn“c’”ab'e|15 14 13 12 1110 98 7 65 4 3 2 1 0 |
Event Register
25
&
L=
&
&
&
< -3
25¥

03§

ywOk
DataOUEStionable | T
MODulation
Event 1514 13 12 1110 98 7 6 54 3 2 1 0|
Enable Register

I To Data Questionable Status Register Bit #7 oK708c

Chapter 3

157

Programming the Status Register System
Status Groups

Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read-only.

Table 3-10 Data Questionable Modulation Condition Register Bits

Bit Description

0 Modulation 1 Undermod. A 1in this bit indicates that the External 1 input, ac coupling on, is less than
0.97 volts.

1 Modulation 1 Overmod. A 1 in this bit indicates that the External 1 input, ac coupling on, is more than
1.03 volts.

2 Modulation 2 Undermod. A 1 in this bit indicates that the External 2 input, ac coupling on, is less than
0.97 volts.

3 Modulation 2 Overmod. A 1 in this bit indicates that the External 2 input, ac coupling on, is more than
1.03 volts.

4 Modulation Uncalibrated. A 1 in this bit indicates that modulation is uncalibrated.

5-14 | Unused. ThishitisawayssettoO.

15 Always 0.

Query: STATus: QUESt i onabl e: MXDul ati on: CONDi ti on?

Response: The decimal sum of the bitsset to 1

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changesin the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: MODul at i on: NTRansi ti on <val ue> (negative transition),
or STATus: QUESt i onabl e: MCDul ati on: PTRansi ti on <val ue> (positive
transition), where <val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: MDul at i on: NTRansi ti on?
STATus: QUESt i onabl e: MXDul ati on: PTRansi ti on?

158 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Query: STATus: QUESti onabl e: MDul ation[: EVENt] ?

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bitsin the Data
Questionable Modulation Event Register set the summary bit (bit 7 of the Data Questionable Condition
Register) to 1.

Command: STATus: QUESt i onabl e: MODul at i on: ENAB| e <val ue> command where <val ue>is
the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Modulation summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: MOD: ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: MODul at i on: ENABI e?

Response: Decimal value of the sum of the bits previously enabled with the
STATus: QUESt i onabl e: MODul ati on: ENABI e <val ue> command.

Chapter 3 159

Programming the Status Register System
Status Groups

Data Questionable Calibration Status Group

NOTE A bit in this status group does not apply to the E4428C and will return a zero when queried.
See Table 3-11 on page 161 for more information.

The Data Questionable Calibration Status Group is used to determine the specific event that set bit 8 in the
Data Questionable Condition Register. This group consists of the Data Questionable Calibration Condition
Register, the Data Questionable Calibration Transition Filters (negative and positive), the Data Questionable
Calibration Event Register, and the Data Questionable Calibration Event Enable Register.

DCFM/DCM Zero Failure
1/Q Calibration Failure
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused
Unused —m8M ———
Always Zero (0)

DatqouEStionable—l Y VYy
gér%hbitriac}#ogegister | 15 14 13 12

DouEsenete 1Y ¥ 3
'?roasrintsi\iltieon Filter |15 118 12
!

Data QUEStionable + +

CAlLibration 15 14 13 12
Negative
Transition Filter + + + +
Data QUEStionable

CALibration |15 14 13 12
Event Register

<
<

—_
- [*

| o (e
o (4 o |«
© (¢ © e © e © [«

-
e

e
jury
—
o

@ |- O f— O (g O |
R = IR S RN 2 N
O |4 O [4 O @ o [&
Ol [O [O (€ O [
BN IR e o BN
(AW 5 AN D AR T
N [N D D

l—

l—

—_
jury
—
o

&
&

@

&
O%

)

O

2}t

Data QUEStionable
CAlLibration

Event) 15 14 13 12 11 10 9 8 7 6 5 4 3
Enable Register

Y To Data Questionable Status Register Bit #8 ck720a

&

A
|
2

= e

160 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration status of the
signal generator. Condition registers are read only.

Table 3-11 Data Questionable Calibration Condition Register Bits

Bit Description

0 DCFM/DC®M Zero Failure. A 1inthis bit indicates that the DCFM/DC®M zero calibration routine has
failed. Thisisacritical error. The output of the source has no validity until the condition of thishit is 0.

12 1/Q Calibration Failure. A 1in this bit indicates that the 1/Q modulation calibration experienced afailure.

2-14 | Unused. These bits are dways set to 0.

15 Always 0.

a. On the E4428C, this bit is set to 0.

Query: STATus: QUESt i onabl e: CALi brati on: CONDi ti on?

Response: The decimal sum of the bits set to 1

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of hit state changesin the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands: STATus: QUESt i onabl e: CALi brati on: NTRansi ti on <val ue> (negativetransition),
or STATus: QUESt i onabl e: CALi brati on: PTRansi ti on <val ue> (positive
transition), where <val ue> is the sum of the decimal values of the bits you want to enable.

Queries: STATus: QUESt i onabl e: CALi brati on: NTRansi ti on?
STATus: QUESt i onabl e: CALi brati on: PTRansi ti on?

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Query: STATus: QUESti onabl e: CALi bration[: EVENt] ?

Chapter 3 161

Programming the Status Register System
Status Groups

Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bitsin the Data
Questionable Calibration Event Register set the summary bit (bit 8 of the Data Questionable Condition
register) to 1.

Command: STATus: QUESt i onabl e: CALi brati on: ENABI e <val ue>, where <val ue> isthe sum
of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Calibration summary hit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: CAL: ENAB 520 (512 + 8).

Query: STATus: QUESt i onabl e: CALi br ati on: ENABI e?

Response: Decimal value of the sum of the bits previoudly enabled with the
STATus: QUESt i onabl e: CALi br ati on: ENABI e <val ue>command.

162 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable BERT Status Group

NOTE This status group does not apply to the E4428C, and if queried will return a zero.

The Data Questionable BERT Status Group is used to determine the specific event that set bit 12 in the Data
Questionable Condition Register. The Data Questionable Status group consists of the Data Questionable
BERT Condition Register, the Data Questionable BERT Transition Filters (negative and positive), the Data
Questionable BERT Event Register, and the Data Questionable BERT Event Enable Register.

No Clock
Mo Data Change
PRBS Sync Loss
Unused
Unused
Unused
Unused
Unused
Unused
Unused

Unused

Downconv/Demod
Unlocked

Demeod DSP
Ampl Out of Range

Syne. to BCH/TCH/PDCH
Waiting for TCH;PDCH

Always Zero (0)

-
-
-4
~
-
-
&
-l
-
-
-
l
%

Dala QUESl:onabl

r
cgnd“mnﬁeglsler 15 14 13121110987 654321 0|
cancuEsionase ¥ ¥ ¥ ¥ ¥ ¥ 4TI AR
Pasitve |15 14 13 12 1110 987 654 3 2 1 0|
ransition Filter
Data QUEStionable + + + + * + + + + * + + + + + +
e e [1514 13 12 1110 98 7 654 3 2 1 0|
Transition Filter + + + ‘ * * + + + + + + + + ‘
EE‘&‘TQUES"°"&‘D'9|15 1413 12 1110 98 7 654 3 2 1 0 |
Event Register
&
&
&
&
&
& &
+ DYy
®Y
D3 3

& (‘é Y

F MOl
Data QUEStionable | f
BERT
Event 1514 13 12 1110 98 7 654 3 2 1 0|

|_Enable Register
¥ To Data Questionable Status Register Bit #12 k7106

Chapter 3 163

Programming the Status Register System
Status Groups

Data Questionable BERT Condition Register

The Data Questionable BERT Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 3-12 Data Questionable BERT Condition Register Bits

Bit Description

0 No Clock. A 1inthishit indicates no clock input for more than 3 seconds.

1 No Data Change. A 1in thisbit indicates no data change occurred during the last 200 clock signals.

2 PRBS Sync Loss. A 1isset while PRBS synchronization is not established. * RST sets the bit to zero.

3-10 | Unused. These bits are dways set to O.

11 Down conv. / Demod Unlocked. A 1in this bit indicates that either the demodulator or the down converter
isout of lock.

12 Demod DSP Ampl out of range. A 1 in this bit indicates the demodulator amplitude is out of range. The
* RST command will set this bit to zero (0).

13 Sync. to BCH/TCH/PDCH. If the synchronization source is BCH, a 1 in this bit indicates BCH
synchronization is not established it does not indicate the TCH/PDCH synchronization status. If the sync
sourceis TCH or PDCH, a1 in this bit indicates that TCH or PDCH synchronization is not established.

* RST sets the bit to zero.

14 Waiting for TCH/PDCH. A 1inthisbit indicates that a TCH or PDCH midamble has not been received.
Thishit isset when bit 13 isset. The bit isalso set when the TCH or PDCH synchronization was once locked
and then lost (in this case the front panel displays “WAITING FOR TCH (or PDCH)". * RST set the hit to
zero.

15 Always 0.

Query: STATus: QUESt i onabl e: BERT: CONDi t i on?
Response: The decimal sum of the bitsset to 1
164 Chapter 3

Programming the Status Register System
Status Groups

Data Questionable BERT Transition Filters (negative and positive)

The Data Questionable BERT Transition Filters specify which type of bit state changesin the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Commands:

Queries:

STATus: QUESt i onabl e: BERT: NTRansi ti on <val ue> (negative transition), or
STATus: QUESt i onabl e: BERT: PTRansi ti on <val ue> (positive transition), where
<val ue> isthe sum of the decimal values of the bits you want to enable.

STATus: QUESt i onabl e: BERT: NTRansi ti on?
STATus: QUESt i onabl e: BERT: PTRansi ti on?

Data Questionable BERT Event Register

The Data Questionable BERT Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Query:

STATus: QUESti onabl e: BERT[: EVENt] ?

Data Questionable BERT Event Enable Register

The Data Questionable BERT Event Enable Register lets you choose which bits in the Data Questionable
BERT Event Register set the summary bit (bit 3 of the Data Questionable Condition Register) to 1.

Command:

Example:

Query:
Response:

STATus: QUESt i onabl e: BERT: ENABl e <val ue> command where <val ue> isthe sum
of the decimal values of the bits you want to enable

Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
BERT summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT: QUES: BERT: ENAB 520 (512 + 8).

STATus: QUESt i onabl e: BERT: ENAB| e?

Decimal value of the sum of the bits previoudly enabled with the
STATus: QUESt i onabl e: BERT: ENABI e <val ue> command.

Chapter 3

165

Programming the Status Register System
Status Groups

166 Chapter 3

4 Creating and Downloading Waveform Files

This chapter explains how to create Arb-based waveform data and download it into the signal generator:

“Overview” on page 168

“Understanding Waveform Data’ on page 170

“Waveform Structure” on page 178

“Waveform Phase Continuity” on page 181

“Waveform Memory” on page 184

“Commands for Downloading and Extracting Waveform Data” on page 186
“Creating Waveform Data’ on page 193

“Downloading Waveform Data” on page 200

“Loading, Playing, and Verifying a Downloaded Waveform” on page 207
“Using the Download Utilities” on page 210

“Downloading E443xB Signal Generator Files’ on page 211
“Programming Examples’ on page 214

“Troubleshooting Waveform Files’ on page 265

167

Creating and Downloading Waveform Files
Overview

Overview

NOTE Creating and downloading waveform datais available only in E4438C ESG Vector Signal
Generators with Option 001/601 or 002/602.

The signal generator lets you download and extract waveform files. You can create these files either external
to the signal generator or by using one of the internal modulation formats. The signal generator also accepts
waveforms files created for the earlier E443xB ESG signal generator models. For file extractions, the signal
generator encrypts the waveform file information. The exception to encrypted file extraction is user-created
I/Q data. The signal generator letsyou extract thistype of file unencrypted. After extracting awaveform file,
you can download it into another Agilent signal generator that has the same option or software license
required to play it. Waveform files consist of three items:

e |/Qdata
* Marker data
e File header

The signal generator automatically creates the marker file and the file header if the two items are not part of
the download. In this situation, the signal generator sets the file header information to unspecified (no
settings saved) and sets all markersto zero (off).

There are two ways to download waveform files, programmatically or using one of three available free
download utilities created by Agilent Technologies:

e Intuilink for PSG/ESG Signal Generators
www.agilent.convfind/intuilink

» PSG/ESG Download Assistant for use only with MATLAB®
www.agilent.convfind/downl oadassi stant

* N7622A Signal Studio Toolkit
www.agilent.conmv/find/signal studio

Waveform Data Requirements
To be successful in downloading files, you must first create the data in the required format.

* Signed 2's complement

» 2-byteinteger values

MATLAB is a U.S. registered trademark of The Math Works, Inc.

168 Chapter 4

Creating and Downloading Waveform Files
Overview

e Input datarange of —32768 to 32767

e Minimum of 60 samples per waveform (60 | and 60 Q data points)
* Interleaved | and Q data

» Big endian byte order

* The same name for the marker and 1/Q file

Thisisonly arequirement if you create and download a marker file, otherwise the signal generator
automatically creates the marker file using the 1/Q data file name. For more information, see “Waveform
Structure” on page 178.

For more information on waveform data, see “ Understanding Waveform Data” on page 170.

Chapter 4 169

Creating and Downloading Waveform Files
Understanding Waveform Data

Understanding Waveform Data

The signal generator accepts binary data formatted into abinary 1/Q file. This section explains the necessary
components of the binary data, which uses ones and zeros to represent a value.

Bits and Bytes

Binary data usesthe base-two number system. Thelocation of each bit within the data represents a val ue that

uses base two raised to a power (2™1). The exponent is n — 1 because the first position is zero. The first bit
position, zero, islocated at the far right. To find the decimal value of the binary data, sum the value of each
location:

1101= (1 x 2%) + (1 x 22 + (0 x 21 + (1 x 29
=(1x8)+(1x4)+(0x2)+(1x1)
= 13 (decimal value)

Notice that the exponent identifies the bit position within the data, and we read the data from right to left.
The signal generator accepts data in the form of bytes. Bytes are groups of eight bits:

01101110 = (0 x27) + (1 x 28) + (1 x 2%) + (0 x 2%) +(1 x23) + (1 x 29 + (1 x 21) + (0 x 20)
= 110 (decimal value)

The maximum value for asingle unsigned byteis 255 (11111111 or 28—1), but you can use multiple bytesto
represent larger values. The following shows two bytes and the resulting integer value:

01101110 10110011= 28339 (decimal value)

The maximum value for two unsigned bytesis 65535. Since binary strings lengthen asthe value increases, it
is common to show binary values using hexadecimal (hex) values (base 16), which are shorter. The value
65535 in hex is FFFF. Hexadecimal consists of thevaluesO, 1, 2, 3, 4,5,6,7,8,9,A,B,C,D,E,and F. In
decimal, hex values range from 0 to 15 (F). It takes 4 bits to represent a single hex value.

1=0001 2=0010 3=0011 4=0100 5=0101
6=0110 7=0111 8 =1000 9=1001 A =1010
B =1011 C=1100 D =1101 E=1110 F=1111

For | and Q data, the signal generator uses two bytes to represent an integer value.

170 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data

LSB and MSB (Bit Order)

Within groups (strings) of bits, we designate the order of the bits by identifying which bit has the highest
value and which has the lowest value by its location in the bit string. The following is an example of this
order.

Most Significant Bit (MSB) Thisbit has the highest value (greatest weight) and islocated at the far |eft of the
bit string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of
the bit string.

Bit Position 15 14 1312 1110 9 8 7 65 4 321 0
Data 1 01101 11 11101001

\

MSB LSB

Because we are using 2-bytes of data, the MSB appears in the second byte.

Little Endian and Big Endian (Byte Order)

When you use multiple bytes (as required for the waveform data), you must identify their order. Thisis
similar to identifying the order of bits by LSB and MSB. To identify byte order, use the terms little endian
and big endian. These terms are used by designers of computer processors.

Little Endian Order

The lowest order byte that contains bits 0—7 comes first.

BitPositon 7 6 5 4 3 2 1 0 15 14 1312 1110 9 8
Data 11101001 10110111 Hex values = E9 B7
LSB MSB

Big Endian Order

The highest order byte that contains bits 8—15 comes first.

Bit Position 15 14 13 12 1110 9 8 7 6 54 32 1 0
Datla 101101 11 11101001 Hex values = B7 E9

‘ .

MSB LSB

Chapter 4 171

Creating and Downloading Waveform Files
Understanding Waveform Data

Noticein the previous figure that the LSB and MSB positioning changes with the byte order. In little endian
order, the LSB and MSB are next to each other in the bit sequence.

NOTE For 1/Q data downloads, the signal generator requires big endian order. For each I/Q data
point, the signal generator uses four bytes (two integer values), two bytesfor the | point and
two bytes for the Q point.

The byte order, little endian or big endian, depends on the type of processor used with your development

platform. Intel© processors and its clones use little endian. Sun™ and Motorola processors use big endian.
The Apple PowerPC processor, while big endian oriented, al so supports the little endian order. Always refer
to the processor’s manufacturer to determine the order they use for bytes, and if they support both, how to
ensure that you are using the correct byte order.

Development platforms include any product that creates and saves waveform datato afile. Thisincludes
Agilent Technologies Advanced Design System EDA software, C++, MATLAB, and so forth.

The byte order describes how the system processor stores integer values as binary datain memory. If you
output data from alittle endian system to atext file (ASCII text), the values are the same as viewed from a
big endian system. The order only becomes important when you use the datain binary format, asis done
when downloading datato the signal generator.

Byte Swapping

While the processor for the development platform determines the byte order, the recipient of the data may
require the bytes in the reverse order. In this situation, you must reverse the byte order before downloading
the data. Thisis commonly referred to as byte swapping. You can swap bytes either programmatically or by
using the Agilent Technologies IntuiLink for PSG/ESG Signal Generators software. For the signal generator,
byte swapping is the method to change the byte order of little endian to big endian. For more information on
little endian and big endian order, see “Little Endian and Big Endian (Byte Order)” on page 171.

The following figure shows the concept of byte swapping for the signal generator. Remember that we can
represent datain hex format (4 bits per hex value), so each byte (8 bits) in the figure shows two example hex
values.

Intel is a U.S. registered trademark of Intel Corporation.
Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.

172 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data

0o 1 2 3
Little Endian | E9| B7| 53] 24| 16-bit integer values (2 bytes = 1 integer value)

| data = bytes O and 1
Q data = bytes 2 and 3

Big Endian ‘ B7 | E9 ‘ 2A ‘ 53 ‘

o 1,2 3
l Q

To correctly swap bytes, you must group the datato maintain the | and Q values. One common method is to
break the two-byte integer into one-byte character values (0-255). Character values use 8 hits (1 byte) to

identify a character. Remember that the maximum unsigned 8-bit value is 255 (28 — 1). Changing the data
into character codes groups the datainto bytes. The next step is then to swap the bytes to align with big
endian order.

NOTE The signal generator always assumes that downloaded dataisin big endian order, so thereis
no data order check. Downloading dataiin little endian order will produce an undesired
output signal.

DAC Input Values

The signal generator uses a 16-bit DAC (digital-to-analog convertor) to process each of the 2-byte integer
valuesfor thel and Q data points. The DA C determines the range of input values required from the 1/Q data.
Remember that with 16-bits we have arange of 065535, but the signal generator dividesthisrange between
positive and negative values:

» 32767 = positive full scale output
+ 0=0volts
e —32768 = negative full scale output

Because the DAC's range uses both positive and negative values, the signal generator requires signed input
values. The following list illustrates the DAC's input value range.

Chapter 4 173

Creating and Downloading Waveform Files
Understanding Waveform Data

Voltage DAC Range Input Range Binary Data Hex Data
Vmax 65535 32767 01111111 11111111 TFFF

: 32768 1 00000000 00000001 0001
0 Volts 32767 0 00000000 00000000 0000

: 32766 -1 11111111 11111112 FFFF
Vmin 0 -32768 10000000 00000000 8000

Notice that it takes only 15 bits (215) to reach the Vmax (positive) or Vmin (negative) values. The MSB
determines the sign of the value. Thisis covered in “2's Complement Data Format” on page 176.

Using E443xB ESG DAC Input Values

The signal generator’sinput values differ from those of the earlier E443xB ESG models. For the E443xB
models, the input values are all positive (unsigned) and the data is contained within 14 bits plus 2 bits for
markers. This meansthat the E443xB DAC has a smaller range:

e 0=negative full scale output
* 8192=0volts
» 16383 = positive full scale output

Although the signal generator uses signed input values, it accepts unsigned data created for the E443xB and
converts it to the proper DAC values. To download an E443xB filesto the signal generator, use the same
command syntax as for the E443xB models. For more information on downloading E443xB files, see
“Downloading E443xB Signal Generator Files’ on page 211.

Scaling DAC Values

The signal generator uses an interpolation algorithm (sampling between the 1/Q data points) when
reconstructing the waveform. For common waveforms, this interpolation can cause overshoot, which may
create a DAC over-range error condition. Because of the interpolation, the error condition can occur even
when al the | and Q values are within the DAC input range. To avoid the DAC over-range problem, you
must scale (reduce) the | and Q input values, so that any overshoot remains within the DAC range.

174 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data

Interpolation
D Interpolation

32767 : m
N v

Max input value _ __ i
Scaling effect

=

DAC over-range No over-range

-32768

Thereisno single scaling value that is optimal for al waveforms. To achieve the maximum dynamic range,
select the largest scaling value that does not result in a DAC over-range error. There are two waysto scale
the I/Q data:

» Reducethe input values for the DAC.
e Usethe SCPI command : RAD o: ARB: RSCal i ng <val > or the front-panel keys, Mode > Dual ARB >

ARB Setup > More (1 of 2) > Waveform Runtime Scaling, to set the waveform amplitude as a percentage of
full scale.

NOTE The signal generator comes from the factory with scaling set to 70%. If you reducethe DAC
input values, ensure that you set the signal generator scaling (: RAD o0: ARB: RSCal i ng)
to an appropriate setting that accounts for the reduced values.

To further minimize overshoot problems, use the correct FIR filter for your signal type and adjust your
sampl e rate to accommaodate the filter response.

Chapter 4 175

Creating and Downloading Waveform Files
Understanding Waveform Data

2’s Complement Data Format

The signal generator requires signed values for the input data. For binary data, two's complement isaway to
represent positive and negative values. The most significant bit (MSB) determines the sign.

» 0Oequasapositive value (01011011 = 91 decimal)
e 1equasanegative value (10100101 = —91 decimal)

Like decimal values, if you sum the binary positive and negative values, you get zero. The one difference
with binary valuesisthat you have acarry, which isignored. The following shows how to calculatethetwo's
complement using 16-bits. The process is the same for both positive and negative values.
Convert the decimal value to binary.

23710 = 01011100 10011110

Notice that 15 bits (0-14) determine the value and bit 16 (M SB) indicates a positive value.
Invert the bits (1 becomes 0 and O becomes 1).

10100011 01100001
Add one to the inverted bits. Adding one makes it atwo’s complement of the original binary value.

10100011 01100001
+ 00000000 00000001
10100011 01100010

The MSB of theresultant is one, indicating a negative value (-23710).
Test the results by summing the binary positive and negative values; when correct, they produce zero.

01011100 10011110
+ 10100011 01100001
00000000 00000000

I and Q Interleaving

When you create the waveform data, the | and Q data points typically reside in separate arrays or files. The
signal generator requiresasingle I/Q file for waveform data playback. The process of interleaving creates a
single array with aternating | and Q data points, with the Q datafollowing the | data. Thisarray isthen
downloaded to the signal generator as abinary file. The interleaved file comprises the waveform data points
where each set of data points, one | data point and one Q data point, represents one I/Q waveform point.

NOTE The signal generator can accept separate | and Q files created for the earlier E443xB ESG
models. For more information on downloading E443xB files, see “ Downloading E443xB
Signal Generator Files’ on page 211.

176 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data

The following figureillustrates interleaving | and Q data. Remember that it takes two bytes (16 hits) to
represent one | or Q data point.

MSB LSB MSB LSB

P

| Data Binary 11001010 01110110 01110111 00111110
Hex CA 76 77 3E

QData Binary 11101001 11001010 01011110 01110010
Hex E9 CA 5E 72

Interleaved Binary Data

Waveform data point Waveform data point
A A
- N N
11001010 01110110 11101001 11001010 01110111 00111110 01011110 01110010
. AN /AN ANS J
~" ~ ' ~
| Data Q Data | Data Q Data

Interleaved Hex Data

Waveform Waveform
data point data point

A p A N
76 E9 77 3E 5E 72

=

| Data Q Data |Data Q Data

g\\
2

1
1
{

Chapter 4 177

Creating and Downloading Waveform Files
Waveform Structure

Waveform Structure

To play back waveforms, the signal generator uses data from the following threefiles:

e File header
* Marker file
* 1/Qfile

All three files have the same name, the name of the I/Q datafile, but the signal generator stores each filein
its respective directory (headers, markers, and waveform). When you extract the waveform file (1/Q data
file), it includes the other two files, so thereis no need to extract each one individually. For more
information on file extractions, see “Commands for Downloading and Extracting Waveform Data” on
page 186.

File Header

Thefile header contains settings for the ARB modulation format such as sample rate, marker polarity, 1/Q
modul ation attenuator setting and so forth. When you create and download 1/Q data, the signal generator
automatically creates afile header with all saved parameters set to unspecified. With unspecified header
settings, the waveform either uses the signal generator default settings, or if awaveform was previously
played, the settings from that waveform. Ensure that you configure and save the file header settings for each
waveform. Refer to the User’s Guide for more information on file headers

NOTE If you have no RF output when you play back a waveform, ensure that the marker RF
blanking function has not been set for any of the markers. The marker RF blanking function
is aheader parameter that can be inadvertently set active for amarker by a previous
waveform.

Marker File

The marker file uses one byte per 1/Q waveform point to set the state of the four markers either on (1) or off
(O) for each 1/Q point. When amarker is active (on), it provides an output trigger signal to the rear panel
EVENT connector that corresponds to the active marker number. Because markers are set at each waveform
point, the marker file contains the same number of bytes as there are waveform points. For example, for 200
waveform points, the marker file contains 200 bytes.

Although a marker point is one byte, the signal generator uses only bits 0-3 to configure the markers; bits
4-7 are reserved and set to zero. The following example shows a marker byte.

178 Chapter 4

Marker Byte 000

Creating and Downloading Waveform Files
Waveform Structure

Marker Number Position

o

[EEGN N
o w
kN
P e

Reserved

Example of Setting a Marker Byte

Binary 0000 0101
Hex 05

Sets markers 1 and 3 on for a waveform point

The following example shows a marker binary file (all valuesin hex) for awaveform with 200 points.
Notice the first marker point, Of , showsall four markers on for only the first waveform point.

00000000:
oooo0010:
oooo0020:
o00o0030:
00000040:
o00o0050:
00000060:
ooooo070:
o00o0080:
o00o0090:
o00o00an:
000000hO:
000000cCo:

ot
o1
o1
o1
a5
a5
05
04
04
04
oo
oo
oo

0l 0l 0l 0l 0l 0l olaloloaolalolaololal Of =Almarkerson

01 01 01 01 01 01 01 01 01 0L 01 01 01 01 01 1 = Marker 1 on

0l 0l 0l 01 0l 01 0L 0l 0l 0ol 0l 0l ol ol ol

05 05 05 05 05 05 05 05 05 05 05 05 05 05 o5 02 = Markers 1 and 3 on
05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 04 = Marker 3 on

05 05 05 05 05 05 05 05 05 05 05 05 05 05 05
05 05 05 04 04 04 04 04 04 04 04 04 04 04 04
04 04 04 04 04 04 04 04 04 04 04 04 04 04 04
04 04 04 04 04 04 04 04 04 04 04 04 04 04 04
04 04 04 04 04 00 00 00 00 OO0 0O 00 00 00 OO
00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 0o
00 00 00 00 OO0 OO0 00 00 00 OO0 00 00 00 00 0o
oo oo oo oo oo oo oo [

00 = No active markers

If you create your own marker file, its name must be the same as the waveform file. If you download 1/Q
datawithout a marker file, the signal generator automatically creates a marker file with all points set to zero.
For more information on markers, see the User’s Guide.

NOTE

Downloading marker data using afile name that currently resides on the signal generator
overwrites the existing marker file without affecting the I/Q (waveform) file. However
downloading just the 1/Q datawith the samefile name as an existing 1/Q file al so overwrites
the existing marker file setting all bitsto zero.

Chapter 4

179

Creating and Downloading Waveform Files
Waveform Structure

1/Q File

The I/Q file contains the interleaved | and Q data points (signed 16-bit integers for each | and Q data point).
Each 1/Q point equals one waveform point. The signal generator stores the 1/Q datain the waveform
directory.

NOTE If you download I/Q data using afile name that currently resides on the signal generator, it
also overwrites the existing marker file setting all bits to zero and the file header setting all
parameters to unspecified.

Waveform

A waveform consists of samples. When you select awaveform for playback, the signal generator loads
settings from the file header and creates the waveform samples from the data in the marker and 1/Q
(waveform) files. The file header, while required, does not affect the number of bytes that compose a
waveform sample. One sample contains five bytes:

I/Q Data + Marker Data = 1 Waveform Sample
2 bytes| 2 bytes Q lbyte (8 bits) 5 bytes
(16 bits) (16 bits) Bits 4—7 reserved—Bits 0-3 set

To create awaveform, the signal generator requires a minimum of 60 samples. To help minimize signal
imperfections, use an even number of samples (for information on waveform continuity, see “Waveform
Phase Continuity” on page 181). When you store waveforms, the signal generator saves changes to the
waveform file, marker file, and file header.

180 Chapter 4

Creating and Downloading Waveform Files
Waveform Phase Continuity

Waveform Phase Continuity

Phase Discontinuity, Distortion, and Spectral Regrowth

The most common arbitrary waveform generation use case isto play back awaveform that isfinitein length
and repeat it continuously. Although often overlooked, a phase discontinuity between the end of awaveform
and the beginning of the next repetition can lead to periodic spectral regrowth and distortion.

For example, the sampled sinewave segment in the following figure may have been simulated in software or
captured off the air and sampled. It is an accurate sinewave for the time period it occupies, however the
waveform does not occupy an entire period of the sinewave or some multiple thereof. Therefore, when
repeatedly playing back the waveform by an arbitrary waveform generator, a phase discontinuity is
introduced at the transition point between the beginning and the end of the waveform.

Repetitions with abrupt phase changes result in high frequency spectral regrowth. In the case of playing
back the sinewave sampl es, the phase discontinuity produces a noticeable increase in distortion components
in addition to the line spectra normally representative of a single sinewave.

Sampled Sinewave with Phase Discontinuity

.J-;
‘. Phase T »] ;
N - ,
x\dlscontmwty ' i x\

q\) k?; Y ;
A ,rj ' *, 4
o, | @ o |
< >

Waveform length

Chapter 4 181

Creating and Downloading Waveform Files
Waveform Phase Continuity

Avoiding Phase Discontinuities

You can easily avoid phase discontinuities for periodic waveforms by simulating an integer number of
cycles when you create your waveform segment.

NOTE If there are N samples in a complete cycle, only the first N-1 samples are stored in the
waveform segment. Therefore, when continuously playing back the segment, the first and
Nth waveform samples are always the same, preserving the periodicity of the waveform.

By adding off time at the beginning of the waveform and subtracting an equivalent amount of off time from
the end of the waveform, you can address phase discontinuity for TDMA or pulsed periodic waveforms.
Consequently, when the waveform repeats, the lack of signal present avoids the issue of phase discontinuity.

However, if the period of the waveform exceeds the waveform playback memory available in the arbitrary
waveform generator, a periodic phase discontinuity could be unavoidable. N5110B Baseband Studio for
Waveform Capture and Playback alleviates this concern because it does not rely on the signal generator
waveform memory. It streams data either from the PC hard drive or the installed PCI card for N5110B
enabling very large data streams. This eliminates any restrictions associated with waveform memory to
correct for repetitive phase discontinuities. Only the memory capacity of the hard drive or the PCI card
limits the waveform size.

Sampled Sinewave with No Discontinuity

- 3 - r\ A
G o [
Ll - -
s oY & A Fa
4 . 4 , &
() / a‘:?l .’_r
Y / N\ /
\ 4 | A\ /A
l’_;\ ' e o

\\‘ H.-\ -x\
\ / ' L
; ; ! Added sample by

Waveform length

182 Chapter 4

Creating and Downloading Waveform Files
Waveform Phase Continuity

The following figuresillustrate the influence a single sample can have. The generated 3-tone test signal
requires 100 samples in the waveform to maintain periodicity for al three tones. The measurement on the
left shows the effect of using the first 99 samples rather than all 100 samples. Notice all the distortion
products (at levels up to —35 dBc) introduced in addition to the wanted 3-tone signal. The measurement on
the right shows the same waveform using all 100 samples to maintain periodicity and avoid a phase
discontinuity. Maintaining periodicity removes the distortion products.

Phase Discontinuity Phase Continuity

o Aglient

WEM 3 kHz

3-tone - 20 MHz Bandwidth 3-tone - 20 MHz Bandwidth
Measured distortion = 35 dBc Measured distortion = 86 dBc

Chapter 4 183

Creating and Downloading Waveform Files
Waveform Memory

Waveform Memory

The signal generator provides two types of memory, volatile and non-volatile. You can download files to
either memory type.

Volatile Random access memory that does not survive cycling of the signal generator power.
This memory is commonly referred to as waveform memory (WFM1) or waveform
playback memory. To play back waveforms, they must reside in volatile memory. The

following file types share this memory:
* 1/Q * marker o fileheader * user PRAM
» waveform sequences (multiple 1/Q files played together)
Non-volatile Storage memory where files survive cycling the signal generator power. Filesremain

until overwritten or deleted. To play back waveforms after cycling the signal generator
power, you must |oad waveforms from non-volatile waveform memory (NVWFM) to

volatile waveform memory (WFM1). The following file types share this memory:
* 1/Q * marker o fileheader ¢ instrument state
e userdata ¢ user PRAM ¢ sweeplist * waveform sequences (multiple I/Q
files played together)
The following figure shows the | ocations within the signal generator for volatile and non-volatile waveform
data
Root directory

USER
E443xB Volatile E443xB Non-volatile
waveform data waveform data Non-volatile waveform data
o L P I o R ,,J
ARBI ARBQ NVARBI NVARBQ HEADER MARKERS WAVEFORM SECUREWAVE
v v
Waveform sequences Volatile waveform directory
SEQ BBG1

Volatile waveform data

A

]

_--""
HEADER MARKERS WAVEFORM SECUREWAVE

184 Chapter 4

Creating and Downloading Waveform Files
Waveform Memory

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, awaveform file with
60 samples (the minimum number of samples) has 300 bytes (5 bytes per sample x 60 samples), but the
signal generator allocates 1024 bytes of memory. If awaveform istoo largeto fit into 1024 bytes, the signal
generator allocates additional memory in multiples of 1024 bytes. For example, the signal generator
allocates 3072 bytes of memory for awaveform with 500 samples (2500 bytes).

3 x 1024 bytes = 3072 bytes of memory

As shown in the exampl es, waveforms can cause the signal generator to allocate more memory than what is
actually used, which decreases the amount of available memory.

Non-Volatile Memory

The signal generator allocates non-volatile memory in blocks of 512 bytes. For files |ess than or equal to
512 bytes, the file uses only one block of memory. For fileslarger than 512 bytes, the signal generator
allocates additional memory in multiples of 512 byte blocks. For example, afile that has 21,538 bytes
consumes 43 memory blocks (22,016 bytes).

Memory Size

The amount of available memory, volatile and non-volatile, varies by option and the size of the other files
that share the memory. When we refer to waveform files, we state the memory size in samples (one sample
equals five bytes). The baseband generator (BBG) options (001/601 and 002/602) contain the waveform
playback memory. The following tables show the maximum available memory.

Volatile (WFM1) Memory Non-Volatile (NVWFM) Memory
Option Size Option Size
001/601 (BBG) 8 MSa (40 MB) Sandard 3MSa (15 MB)
002 (BBG) 32 MSa (160 MB) 005 (Hard disk) 1GSa(5GB)
602 (BBG) 64 MSa (320 MB)

Chapter 4 185

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Commands for Downloading and Extracting Waveform Data

You can download 1/Q data and the associated file header and marker file information (collectively called
waveform data) into volatile or non-volatile memory. For information on waveform structure, see
“Waveform Structure” on page 178.

NOTE Before downloading filesinto volatile memory (WFML), turn off the ARB.
Press: Mode > Dual Arb > ARB Off On until Off highlights
Orsend: [: SOURce] : RAD o: ARB[: STATe] OFF

The signal generator provides the option of downloading waveform data either for extraction or not for
extraction. When you extract waveform data, the signal generator encrypts the data. The SCPI download
commands determine whether the waveform data is extractable.

If you use SCPI commands to download waveform data to be extracted later, you must use the
MEM DATA: UNPRot ect ed command. If you use FTP commands, no special command syntax is necessary.

You can download or extract waveform data created in any of the following ways:

» with signal simulation software, such as MATLAB or Agilent Advanced Design System (ADS)
» with advanced programming languages, such as C++, VB or VEE

» with Agilent Signal Studio software

» with the signal generator

NOTE You can not extract files created with ESG firmware revisions prior to C.03.10.

Waveform Data Encryption

You can download encrypted waveform data extracted from one signal generator into another signal
generator with the same option or software license for the modulation format. You can al so extract encrypted
waveform data created with software such as MATLAB or ADS, providing the data was downloaded to the
signal generator using the proper command.

When you generate awaveform from the signal generator’sinternal ARB modulation format or download a
waveform from an Agilent Signal Studio software product, the resulting waveform datais automatically
stored in volatile memory and is available for extraction as an encrypted file.

The exception to encrypted file extraction is user-created 1/Q data. You can extract this1/Q data
unencrypted.

186 Chapter 4

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Encrypted 1/Q Files and the Securewave Directory

The signal generator usesthe secur ewave directory to perform file encryption (extraction) and decryption
(downloads). The secur ewave directory is not an actual storage directory, but rather a portal for the
encryption and decryption process. While the secur ewave directory containsfile names, these are actually
pointersto the true files located in signal generator memory (volatile or non-volatile). When you download
an encrypted file, the secur ewave directory decrypts the file and unpackages the contentsinto itsfile
header, 1/Q data, and marker data. When you extract afile, the secur enave directory packages the file
header, 1/Q data, and marker data and encrypts the waveform datafile.

The signal generator uses the following secur ewave directory paths for file extractions and encrypted file
downloads:

Volatile Juser/securewave/file_name or swfm:file_name
Non-volatile /user/bbgl/securewave/file_name or snwwfml.:file_name
NOTE To extract files (other than user-created 1/Q files) and to download encrypted files, you must

use the secur ewave directory. If you attempt to extract previously downloaded encrypted
files (including Signal Studio downloaded files or internally created signal generator files)
without using the securewave directory, the signal generator generates an error and displays
ERROR 221, Access Deni ed.

File Transfer Methods

e SCPI using VXI-11 (VMEbus Extensions for Instrumentation as defined in VXI-11)
SCPI over the GPIB or RS 232

e SCPI with sockets LAN (using port 5025)

File Transfer Protocol (FTP)

SCPI Command Line Structure

The signal generator expects to see waveform data as block data (binary files). The |IEEE standard
488.2-1992 section 7.7.6 defines block data. The following example shows how to structure a SCPI
command for downloading waveform data (#ABC represents the block data):

: MVEM DATA "<fil e_name>", #ABC

"<file_nane>" thel/Q file name and file path within the signal generator
indicates the start of the data block

the number of decimal digits present in B

adecimal number specifying the number of data bytesto follow in C
the actual binary waveform data

O o >

Chapter 4 187

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

The following example demonstrates this structure:
MVEM DATA [WFML: y_fil e”|, 43 240, 12%8! 4&07#8g* YOO . . .

| | |
C

file_name A B
WFML: the file path
my file the 1/Q file name asit will appear in the signal generator’s memory catal og
indicates the start of the data block
3 B has three decimal digits
240 240 bytes of datato follow in C
12%8! 4&07#8g* YO @I . . . the ASCII representation of some of the binary data downloaded to the

signal generator, however not all ASCII values are printable

NOTE If you use SCPI with sockets to send data to the signal generator, you must provide an
end-of-file indicator, as shown in the following command:
MVEM DATA "WFML: <f i | e_nane>", <bl ockdat a>NL"END

Commands and File Paths for Downloading and Extracting Waveform Data
You can download or extract waveform data using the commands and file pathsin the following tables:

» Table4-1, “Downloading Unencrypted Files for No Extraction,” on page 188
» Table4-2, “Downloading Encrypted Files for No Extraction,” on page 189

» Table4-3, “Downloading Unencrypted Files for Extraction,” on page 189

» Table4-4, “Downloading Encrypted Files for Extraction,” on page 190

» Table4-5, “Extracting Encrypted Waveform Data,” on page 191

Table 4-1 Downloading Unencrypted Files for No Extraction
Download Method/ Command Syntax Options
Memory Type

SCPI/volatile memory MVEM DATA "WFML: <fi | e_name>", <bl ockdat a>
MVEM DATA "MKRL: <fi | e_name>", <bl ockdat a>
MVEM DATA "HDRL: <fi |l e_name>", <bl ockdat a>

SCPI/volatile memory MVEM DATA "user/ bbgl/ wavef orm <fi |l e_name>", <bl ockdat a>
with full directory path MVEM DATA "user/ bbgl/ mar kers/ <fil e_name>", <bl ockdat a>
MVEM DATA "user/ bbgl/ header/ <fil e_nane>", <bl ockdat a>

188 Chapter 4

Table 4-1

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Downloading Unencrypted Files for No Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/non-volatile
memory

MVEM DATA "NWAM <fi | e_name>", <bl ockdat a>
MVEM DATA "NVMKR <fi | e_name>", <bl ockdat a>
MVEM DATA "NVHDR <fi | e_name>", <bl ockdat a>

SCPI/non-volatile
memory with full
directory path

MVEM DATA / user/wavef ormi <fi | e_nanme>", <bl ockdat a>
MVEM DATA /user/ mar ker s/ <fil e_nanme>", <bl ockdat a>
MVEM DATA / user/ header/ <fil e_name>", <bl ockdat a>

Table 4-2

Downloading Encrypted Files for No Extraction

Download Method
/Memory Type

Command Syntax Options

SCPI/volatile memory

MVEM DATA "user/ bbgl/ secur ewave/ <fil e_name>", <bl ockdat a>
MVEM DATA " SWFML: <fi | e_name>", <bl ockdat a>
MVEM DATA "fi |l e_name @WML", <bl ockdat a>

SCPI/non-volatile
memory

MVEM DATA "user/ secur ewave/ <fil e_name>", <bl ockdat a>
MVEM DATA " SNWAFM <fi | e_nane>", <bl ockdat a>
MVEM DATA "fi |l e_name @NVWM', <bl ockdat a>

Table 4-3

Downloading Unencrypted Files for Extraction

Download Method/

Command Syntax Options

Memory Type
SCPI/volatile MEM DATA: UNPRot ect ed "/ user/ bbgl/ wavef orni fil e_nane", <bl ockdat a>
memory MEM DATA: UNPRot ect ed "/ user/ bbgl/ narkers/fil e_nane", <bl ockdat a>

MEM DATA: UNPRot ect ed "/ user/ bbgl/ header/fil e_nane", <bl ockdat a>
MEM DATA: UNPRot ect ed "WFML: fi | e_nane", <bl ockdat a>
MEM DATA: UNPRot ect ed "MKRL: fi | e_nane", <bl ockdat a>
MEM DATA: UNPRot ect ed "HDRL: fil e_nane", <bl ockdat a>
MEM DATA: UNPRot ected "fil e_nane@W¥ML", <bl ockdat a>
MEM DATA: UNPRot ected "fil e_nane@KRL", <bl ockdat a>
MEM DATA: UNPRot ected "fi |l e_nane@DRL", <bl ockdat a>

Chapter 4

189

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 4-3 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/non-volatile MEM DATA: UNPRot ect ed "/ user/waveforni fil e_name", <bl ockdat a>

memory MEM DATA: UNPRot ect ed "/ user/ narkers/fil e_name", <bl ockdat a>
MEM DATA: UNPRot ect ed "/ user/ header/fil e_nane", <bl ockdat a>
MEM DATA: UNPRot ect ed "NWWM fi | e_nane", <bl ockdat a>
MEM DATA: UNPRot ected "NVWKR fi | e_nane", <bl ockdat a>
MEM DATA: UNPRot ect ed "NVHDR fi | e_nane", <bl ockdat a>
MEM DATA: UNPRot ected "fi | e_nane@WWM', <bl ockdat a>
MEM DATA: UNPRot ect ed "fil e_nane@WVMWKR', <bl ockdat a>
MEM DATA: UNPRot ect ed "fi | e_nane@WVHDR', <bl ockdat a>
FTP/volatile put <file_name> /user/bbgl/ waveforni <fil e_nane>
memory’ put <file_name> /user/bbgl/ markers/<fil e_name>
FTP/non-volatile put <file_name> /user/waveforni <fil e_name>
memory? put <file_name> /user/narkers/<fil e_name>

1 See “FTP Procedures” on page 191.

MEM DATA: UNPRot ect ed

Table 4-4 Downloading Encrypted Files for Extraction
Download Command Syntax Options
Method/Memory
Type
SCPI/volatile MEM DATA: UNPRot ect ed "/ user/ bbgl/ secur ewave/ fil e_name", <bl ockdat a>
memory MEM DATA: UNPRot ect ed " SWML: fi | e_nane", <bl ockdat a>

"fil e_name@WML", <bl ockdat a>

SCPI/non-volatile
memory

MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed
MEM DATA: UNPRot ect ed

"/ user/securewave/ fil e_nane", <bl ockdat a>
"SNWAFM fi | e_name", <bl ockdat a>
"fil e_name@NWWFM , <bl ockdat a>

FTP/volatile
memory!

put <file_name> /user/bbgl/ securewave/<fil e_nane>

FTP/non-volatile
memory!

put <file_name> /user/securewave/<fil e_nane>

1 See “FTP Procedures” on page 191.

190

Chapter 4

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Table 4-5 Extracting Encrypted Waveform Data
Download Command Syntax Options
Method/Memory
Type
SCPI/volatile MVEM DATA? "/ user/bbgl/ securewave/fil e_nane"
memory MVEM DATA? " SWFML: fi | e_nane"

MVEM DATA? "fil e_name @GWML"

SCPI/non-volatile | MVEM DATA? "/ user/secur ewave/ fil e_name"
memory MVEM DATA? " SNVWWFM fi | e_nane"
MVEM DATA? "fi |l e_name @GNWFM

FTP/volatile get /user/bbgl/ securewave/ <fil e_nanme>
memory!

FTP/non-volatile | get /user/securewave/ <fil e_nane>
memory!

1 See FTP Procedures.

FTP Procedures

There are three waysto FTP files:

» use Microsoft's ® Internet Explorer FTP feature
» usethe signal generator’sinternal web server (ESG firmware = C.03.76)
» usethe PC'sor UNIX command window

Using Microsoft’s Internet Explorer

1. Enter the signal generator’s hostname or |P address as part of the FTP URL.
ftp://<host name> or <IP address>

2. PressEnter on the keyboard or Go from the Internet Explorer window.
The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Microsoft is a U.S registered trademark of Microsoft Corporation.

Chapter 4 191

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data

Using the Signal Generator’s Internal Web Server

1. Enter the signal generator’s hostname or IP addressin the URL .
http://<host name> or <IP address>
2. Click the Signal Generator FTP Access button located on the left side of the window.
The signal generator files appear in the web browser’s window.
3. Drag and drop files between the PC and the browser’s window
For more information on the web server feature, see “ Communicating with the Signal Generator Using a
Web Browser” on page 32.
Using the Command Window (PC or UNIX)

This procedure downloads to non-volatile memory. To download to volatile memory, change the file path.

1. From the PC command prompt or UNIX command line, change to the destination directory for the file
you intend to download.

2. From the PC command prompt or UNIX command line, typeft p <i nstrunent nanme>. Where
i nstrument nane isthesignal generator’s hostname or |P address.

3. AttheUser: prompt in the ftp window, pressEnter (no entry isrequired).
4. AtthePasswor d: prompt in the ftp window, press Enter (no entry is required).

5. Attheft p prompt, type:
put <file_nanme> /user/waveforn <file_nanel>

where <f i | e_nane> isthe name of the file to download and <f i | e_nanel1> isthe name designator
for the signal generator’'s/ user/ wavef or i directory.

« |If amarker fileis associated with the data file, use the following command to download it to the
signal generator:
put <narker file_name> /user/narkers/<file_namel>

where <mar ker fil e_nane>isthe name of thefileto download and <fil e_nanel> isthe
name designator for the filein the signal generator’s/ user/ mar ker s/ directory. Marker filesand
the associated 1/Q waveform data have the same name.

NOTE If no marker fileis provided, the signal generator automatically creates a default marker file
consisting of all zeros.

6. Attheft p prompt, type: bye
7. At the command prompt, type: exi t

192 Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data

Creating Waveform Data

This section examinesthe C++ code algorithm for creating 1/Q waveform data by breaking the programming
example into functional parts and explaining the code in generic terms. Thisis done to help you understand
the code algorithm in creating the | and Q data, so you can leverage the concept into your programming
environment. If you do not need thislevel of detail, you can find the complete programming examplein
“Programming Examples’ on page 214.

You can use various programming environments to create ARB waveform data. Generally there are two
types:

» Simulation software— thisincludes MATLAB, Agilent Technologies EESof Advanced Design System
(ADS), Signal Processing WorkSystem (SPW), and so forth.

» Advanced programming languages—thisincludes, C++, VB, VEE, MS Visual Studio.Net, Labview,
and so forth.

No matter which programming environment you use to create the waveform data, make sure that the data
conforms to the data requirements shown on page 168. To learn about I/Q data for the signal generator, see
“Understanding Waveform Data’ on page 170.

Code Algorithm

This section uses code from the C++ programming example “Importing, Byte Swapping, Interleaving, and
Downloading | and Q Data—Big and Little Endian Order” on page 235 to demonstrate how to create and
scale waveform data.

There are three steps in the process of creating an 1/Q waveform:

1. Createthel and Q data.
2. Savethel and Q datato atext file for review.
3. Interleave the |l and Q datato make an 1/Q file, and swap the byte order for little-endian platforms.

For information on downloading 1/Q waveform data to a signal generator, refer to “Commands and File
Paths for Downloading and Extracting Waveform Data’ on page 188 and “ Downloading Waveform Data”
on page 200.

Chapter 4 193

Creating and Downloading Waveform Files
Creating Waveform Data

1. Create | and Q data.
Thefollowing lines of code create scaled | and Q datafor asine wave. The | data consists of one period of a
sine wave and the Q data consists of one period of a cosine wave.

Line Code—cCreate | and Q data

1 const int NUVBAMPLES=500;

2 mai n(int argc, char* argv[]);

3 {

4 short i dat a] NUMBAMPLES] ;

5 short qdat a| NUMSAMPLES] ;

6 int nunsanpl es = NUVBAMVPLES;

7 for(int index=0; index<nunsanples; index++);

8 {

9 i dat a[i ndex] =23000 * si n((2*3. 14*i ndex) / nunsanpl es) ;

10 gdat a[i ndex] =23000 * cos((2*3. 14*i ndex)/ nunmsanpl es);

1 }

Line Code Description—Create | and Q data

1 Define the number of waveform points. Note that the maximum number of waveform
points that you can set is based on the amount of available memory in the signal generator.
For more information on signal generator memory, refer to “Waveform Memory” on
page 184.

2 Define the main function in C++.

4 Create an array to hold the generated | values. The array length equals the number of the
waveform points. Note that we define the array as type short, which represents a 16-bit
signed integer in most C++ compilers.

5 Create an array to hold the generated Q values (signed 16-bit integers).

6 Define and set atemporary variable, which is used to calculate the | and Q values.

194 Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data

Line

Code Description—Create | and Q data

7-11

Create aloop to do the following:

« Generate and scale the | data (DA C values). This example uses a simple sine equation,
where 2* 3.14 equals one waveform cycle. Change the equation to fit your application.

— Thearray pointer, index, increments from 0499, creating 500 | data points over one
period of the sine waveform.

— Set the scale of the DAC valuesin the range of —32767 to 32768, where the values
—32767 and 32768 equal full scale negative and positive respectively. This example
uses 23000 as the multiplier, resulting in approximately 70% scaling. For more
information on scaling, see “ Scaling DAC Values’ on page 174.

NOTE The signal generator comes from the factory with 1/Q scaling set to 70%. If
you reduce the DAC input values, ensure that you set the signal generator
scaling (: RAD o: ARB: RSCal i ng) to an appropriate setting that
accounts for the reduced values.

e Generate and scale the Q data (DAC value). This example uses a ssimple cosine

equation, where 2* 3.14 equals one waveform cycle. Change the equation to fit your
application.

— Thearray pointer, index, increments from 0499, creating 500 Q data points over
one period of the cosine waveform.

— Set the scale of the DAC valuesin the range of —32767 to 32768, where the values
—-32767 and 32768 equal full scale negative and positive respectively. This example
uses 23000 as the multiplier, resulting in approximately 70% scaling. For more
information on scaling, see “ Scaling DAC Values’ on page 174.

Chapter 4

195

Creating and Downloading Waveform Files
Creating Waveform Data

2. Save the 1/Q data to a text file to review.

Thefollowing lines of code export the | and Q datato atext filefor validation. After exporting the data, open
the file using Microsoft Excel or asimilar spreadsheet program, and verify that the | and Q data are correct.

Line Code Description—Saving the 1/Q Data to a Text File

12 char *ofile = "c:\\temp\\iqg.txt";
13 FILE *outfile = fopen(ofile, "w');

14 if (outfile==NULL) perror ("Error opening file to wite");
15 for(i ndex=0; index<numsanpl es; index++)
16 {
17 fprintf(outfile, "%, %l\n", idata[index], qdata[index]);
18 }
19 fclose(outfile);
Line Code Description—Saving the 1/Q Data to a Text File

12 Set the absolute path of atext file to a character variable. In this example, iq.txt isthefile
name and * ofile is the variable name.

For thefile path, some operating systems may not use the drive prefix (‘c:’ inthisexample),
or may require only asingle forward slash (/), or both (" / temp/ ig.txt")

13 Open the text file in write format.

14 If the text file does not open, print an error message.

15-18 | Create aloop that prints the array of generated | and Q data samplesto the text file.

19 Close the text file.

196 Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data

3. Interleave the | and Q data, and byte swap if using little endian order.

This step has two sets of code:

» Interleaving and byte swapping | and Q datafor little endian order
» Interleaving | and Q datafor big endian order

For more information on byte order, see “Little Endian and Big Endian (Byte Order)” on page 171.

Line Code—Interleaving and Byte Swapping for Little Endian Order
20 char i gbuf f er [NUVBAMPLES* 4] ;
21 for (i ndex=0; index<nunmsanpl es; index++)
22 {
23 short ivalue = idata[index];
24 short qval ue = qdata[i ndex];
25 i gbuf fer[i ndex*4] = (ivalue >> 8) & OxFF;
26 i gbuf fer[index*4+1] = ival ue & OxFF;
27 i gbuf fer[index*4+2] = (qgval ue >> 8) & OxFF;
28 i gbuf fer[i ndex*4+3] = gval ue & OxFF;
29 }
30 return O;
Line Code Description—Interleaving and Byte Swapping for Little Endian Order
20 Define a character array to store the interleaved | and Q data. The character array makes
byte swapping easier, since each array location accepts only 8 bits (1 byte). The array size
increases by four times to accommodate two bytes of | data and two bytes of Q data.
21-29 | Create aloop to do the following:

e Savethe current | data array valueto avariable.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this
condition exists, replace short with the appropriate object or label that
defines a 16-bit integer.

« Savethe current Q data array valueto avariable.
« Swap the low bytes (bits 0-7) of the data with the high bytes of the data (done for both

Chapter 4

197

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code Description—Interleaving and Byte Swapping for Little Endian Order
21-29 the |l and Q data), and interleave the | and Q data.
— shift the data pointer right 8 bits to the beginning of the high byte (ivalue >> 8)
Little Endian Order
7 6 5 4 3 2 1 0 1514 1312 1110 9 8 BitPosition
11101001 101101 11 Dpata
* ______ > * Hex values = E9 B7
Data pointer Data pointer shifted 8 bits
— AND (boolean) the high | byte with OxFF to make the high | byte the value to store
in the |Q array—(ivalue >> 8) & OxFF
15 14 1312 1110 9 8
101101 11 Hexvalue=B7
111111 11 Hexvalue=FF
101101 11 Hexvalue=B7
— AND (boolean) the low | byte with OxFF (ivalue & OxFF) to makethelow | byte the
value to storein the 1/Q array location just after the high byte [index * 4 + 1]
| Data in 1/Q Array after Byte Swap (Big Endian Order)
15 14 1312 1110 9 8 7 6 5 4 3 2 1 0 BitPosition
10110111 11101001 Data
Hex value = B7 E9
— Swap the Q byte order within the same loop. Notice that the | and Q data interleave
with each loop cycle. Thisis dueto the I/Q array shifting by one location for each |
and Q operation [index * 4 + n].
Interleaved 1/Q Array in Big Endian Order
150 - S A 0 15 -2 S o Bit Position
1011011111101001 1110010101101011 Data
- 2N /
~ ~
| Data Q Data
198 Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data

Line Code—Interleaving | and Q data for Big Endian Order
20 short i gbuffer[NUVBAVPLES* 2] ;
21 for (i ndex=0; index<numsanpl es; index++)
22 {
23 i gbuf fer[index*2] = idata[index];
24 i gbuf fer[index*2+1] = qdat a[i ndex];
25 }
26 return O;
Line Code Description—Interleaving | and Q data for Big Endian Order
20 Define a 16-bit integer (short) array to store the interleaved | and Q data. The array size
increases by two times to accommodate two bytes of | data and two bytes of Q data.
NOTE In rare instances, a compiler may define short as larger than 16 bits. If this
condition exists, replace short with the appropriate object or label that
defines a 16-bit integer.
21-25 | Create aloop to do the following:

e Storethel datavaluesto the I/Q array location [index*2].
e Store the Q data valuesto the 1/Q array location [index* 2+1].

Interleaved 1/Q Array in Big Endian Order

15, 8 T, 0 15, 8 T, 0 Bit Position
1011011111101001 1110010101101011 pata
- AN)

~ ~

| Data Q Data

To download the data created in the above example, see “Using Advanced Programming Languages’ on

page 203.

Chapter 4

199

Creating and Downloading Waveform Files
Downloading Waveform Data

Downloading Waveform Data

This section examines methods of downloading 1/Q waveform data created in MATLAB (asimulation
software) and C++ (an advanced programming language). For more information on simulation and
advanced programming environments, see “Creating Waveform Data’ on page 193.

To download data from simulation software environments, it istypically easier to use one of the free
download utilities (described on page 210), because simulation software usually savesthe datato afile. In
MATLAB however, you can either save datato a.mat file or create a complex array. To facilitate
downloadingaMATLAB complex dataarray, Agilent created the PSG/ESG Download Assistant (one of the
free download utilities), which downloads the complex data array from within the MATLAB environment.
This section shows how to use the download assistant.

For advanced programming languages, this section closely examines the code algorithm for downloading
1/Q waveform data by breaking the programming examples into functional parts and explaining the code in
generic terms. Thisis done to help you understand the code a gorithm in downloading the interleaved 1/Q
data, so you can leverage the concept into your programming environment. While not discussed in this
section, you may also save the datato a binary file and use one of the download utilities to download the
waveform data (see “ Using the Download Utilities’ on page 210).

If you do not need the level of detail this section provides, you can find complete programming examplesin
“Programming Examples’ on page 214. Prior to downloading the I/Q data, ensure that it conformsto the
data requirements shown on page 168. To learn about 1/Q data for the signal generator, see “ Understanding
Waveform Data’ on page 170. For creating waveform data, see “ Creating Waveform Data” on page 193.

NOTE Before downloading filesinto volatile memory (WFML), turn off the ARB.
Press: Mode > Dual Arb > ARB Off On until Off highlights
Or send: [: SOURce] : RAD o: ARB[: STATe] OFF

Using Simulation Software

This procedure uses a complex data array created in MATLAB and uses the PSG/ESG Download Assistant
to download the data. To obtain the PSG/ESG Download Assistant, see “Using the Download Utilities” on
page 210.

There are two steps in the process of downloading an 1/Q waveform:

1. Open aconnection session.
2. Download the I/Q data.

200 Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data

1. Open a connection session with the signal generator.
Thefollowing code establishesa LAN connection with the signal generator, sends the |EEE SCPI command
*i dn?, and if the connection fails, displays an error message.

Line

1

ab~owiN

Code—Open a Connection Session

io = agt_newconnection('tcpip','|P address');

% o0 = agt _newconnection('gpib', <prinmary address>, <secondary

addr ess>) ;

[status, status_description,query result] = agt_query(io,' *idn?');
if status == -

display ‘fail to connect to the signal generator’;

end;

Line

Code Description—Open a Connection Session with the Signal Generator

Sets up a structure (indicated above by i0) used by subsequent function callsto establish a
LAN connection to the signal generator.

e agt_newconnection() isthe function of Agilent Download Assistant used in MATLAB
to build a connection to the signal generator.

e |f you are using GPIB to connect to the signal generator, provide the board, primary
address, and secondary address: io = agt_newconnection(‘gpib',0,19);
Change the GPIB address based on your instrument setting.

Send a query to the signal generator to verify the connection.

e agt_query() isan Agilent Download Assistant function that sends a query to the signal
generator.

« |If signal generator receivesthe query *i dn?, status returns a zero and query_result
returns the signal generator’s model number, serial number, and firmware version.

35

If the query fails, display a message.

Chapter 4

201

Creating and Downloading Waveform Files
Downloading Waveform Data

2. Download the I/Q data
The following code downloads the generated waveform data to the signal generator, and if the download

fals, displays amessage.

Line Code—Download the 1/Q data
6 [status, status_description] = agt_waveform oad(io, | Quave,
"wavefornfilel' , 2000, 'no_play','normscale');
7 if status == -
8 display ‘fail to download to the signal generator’;
9 end;
Line Code Description—Download the 1/Q data
6 Download the I/Q waveform data to the signal generator by using the function call

(agt_waveformload) from the Agilent Download Assistant. Some of the arguments are
optional asindicated below, but if oneis used, you must use all arguments previous to the
onhe you require.

Notice that with this function, you can perform the following actions:

e download complex 1/Q data
« namethefile (optional argument)
e set the sample rate (optional argument)

If you do not set avalue, the signal generator uses its preset value of 100 MHz, or if a
waveform was previously play, the value from that waveform.

e start or not start waveform playback after downloading the data (optional argument)
Use either the argument play or the argument no_play.
« whether to normalize and scale the 1/Q data (optional argument)

If you normalize and scal e the data within the body of the code, then use no_normscale,
but if you need to normalize and scale the data, use norm_scale. This normalizes the
waveform data to the DAC values and then scales the data to 70% of the DAC values.

e download marker data (optional argument)

If there is no marker data, the signal generator creates a default marker file, all marker
set to zero.

To verify the waveform data download, see “L oading, Playing, and Verifying a
Downloaded Waveform” on page 207.

7-9 If the download fails, display an error message.

202 Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data

Using Advanced Programming Languages

This procedure uses code from the C++ programming example “Importing, Byte Swapping, Interleaving,
and Downloading | and Q Data—Big and Little Endian Order” on page 235.

For information on creating 1/Q waveform data, refer to “ Creating Waveform Data” on page 193.

There are two steps in the process of downloading an 1/Q waveform:

1. Open aconnection session.
2. Download the I/Q data.

1. Open a connection session with the signal generator.
The following code establishes a LAN connection with the signal generator or prints an error message if the
session is not opened successfully.

Line Code Description—Open a Connection Session
1 char* instQpenString ="l an[hostnane or | P address]";
[/ char* instenString ="gpi b<primary addr>, <secondary addr>";
2 I NST i d=i open(i nstpenString);
3 if (tid)
4 {
5 fprintf(stderr, "iopen failed (%)\n", instQpenString);
6 return -1;
7 }
Line Code Description—Open a Connection Session
1 Assign the signal generator’s LAN hostname, |P address, or GPIB address to a character

string.

e Thisexample usesthe Agilent IO library’siopen() SICL function to establishaLAN
connection with the signal generator. The input argument, lan[hostname or |P address]
containsthe device, interface, or commander address. Changeit to your signal generator
host name or just set it to the | P address used by your signal generator. For example:
“lan[999.137.240.9]"

e |f you are using GPIB to connect to the signal generator, use the commented linein
place of thefirst line. Insert the GPIB address based on your instrument setting, for
example “gpib0,19”.

» For the detailed information about the parameters of the SICL function iopen(), refer to
the online “ Agilent SICL User’s Guide for Windows.”

Chapter 4

203

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Open a Connection Session

2 Open a connection session with the signal generator to download the generated 1/Q data.

The SICL function iopen() isfrom the Agilent 10 library and creates a session that returns
anidentifier toid.

« If iopen() succeedsin establishing a connection, the function returns a valid session id.
Thevalid session id is not viewable, and can only be used by other SICL functions.

« If iopen() generates an error before making the connection, the session identifier is set
to zero. This occursiif the connection fails.

¢ Tousethisfunction in C++, you must include the standard header
#include <sicl.h> before the main() function.

37 If id = 0, the program prints out the error message and exits the program.

2. Download the 1/Q data.
The following code sends the SCPI command and downl oads the generated waveform data to the signal
generator.

Line CodeDescription—Download the 1/Q Data

8 i nt bytesToSend;

9 byt esToSend = nunsanpl es*4;

10 char s[20];

1 char cnd[200] ;

12 sprintf(s, "%l", bytesToSend);

13 sprintf(cnd, ":MEM DATA \"WFML: FI LE1\ ", #%%l", strlen(s),
byt esToSend) ;

14 iwite(id, cnd, strlen(cnd), 0, 0);

15 iwite(id, iqgbuffer, bytesToSend, 0, 0);

16 iwite(id, "\n", 1, 1, 0);

Line Code Description—Download the 1/Q data

8 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.

204 Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data

Line

Code Description—Download the 1/Q data

Calculate the total number of bytes, and store the value in the integer variable defined in
line 8.

In this code, numsampl es contains the number of waveform points, not the number of bytes.
Because it takes four bytes of data, two | bytes and two Q bytes, to create one waveform
point, we have to multiply humsamples by four. Thisis shown in the following example:

numsamples = 500 waveform points
numsamples x 4 = 2000 (four bytes per point)
bytesToSend = 2000 (numsamples x 4)

For information on setting the number of waveform points, see“1. Create | and Q data.” on
page 194.

10

Create a string large enough to hold the bytesToSend val ue as characters. In this code, string
sis set to 20 bytes (20 characters—one character equal's one byte)

n

Create a string and set its length (cmd[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).

12

Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = "2000"

13

Store the SCPI command syntax and parameters in the string cmd. The SCPI command
prepares the signal generator to accept the data.

« gprintf() isastandard function in C++, which writes string data to a string variable.
e gtrlen() isastandard function in C++, which returns length of a string.

e |If bytesToSend = 2000, then s =“2000", strlen(s) = 4, so
cmd = :MEM:DATA "WFM 1:FILEL\" #42000.

14

Send the SCPI command stored in the string cmd to the signal generator, which is
represented by the session id.

e iwrite() isaSICL functionin Agilent 10 library, which writes the data (block data)
specified in the string cmd to the signal generator (id).

e Thethird argument of iwrite(), strlen(cmd), informs the signal generator of the number
of bytesin the command string. The signal generator parses the string to determine the
number of I/Q data bytes it expectsto receive.

e Thefourth argument of iwrite(), zero, meansthere is no END indicator for the string.
Thislets the session remain open, so the program can download the 1/Q data.

Chapter 4

205

Creating and Downloading Waveform Files
Downloading Waveform Data

Line Code Description—Download the 1/Q data

15 Send the generated waveform data stored in the 1/Q array (igbuffer) to the signal generator.

« iwrite() sends the data specified in igbuffer to the signal generator (session identifier
specified in id).

¢ Thethird argument of iwrite(), bytesToSend, contains the length of the igbuffer in bytes.
In this example, it is 2000.

e Thefourth argument of iwrite(), 0, meansthere isno END indicator in the data.

In many programming languages, there are two methods to send SCPI commands and
data:

— Method 1 where the program stops the data download when it encounters the first
zero (END indicator) in the data.

— Method 2 where the program sends afixed number of bytesand ignores any zerosin
the data. Thisisthe method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the | and Q data.

16 Send the terminating carriage (\n) asthe last byte of the waveform data.
« iwrite() writesthe data“\n” to the signal generator (session identifier specified in id).
« Thethird argument of iwrite(), 1, sends one byte to the signal generator.

e Thefourth argument of iwrite(), 1, isthe END indicator, which the program uses to
terminate the data download.

To verify the waveform data download, see “L oading, Playing, and Verifying a
Downloaded Waveform” on page 207.

206 Chapter 4

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

Loading, Playing, and Verifying a Downloaded Waveform

The following procedures show how to perform the steps using either front-panel key presses or SCPI
commands.

Loading a File from Non-Volatile Memory

Select the downloaded 1/Q file in non-volatile waveform memory (NVWFM) and load it into volatile
waveform memory (WFM1). The file comprises three items: 1/Q data, marker file, and file header
information. Loading the 1/Q file also |oads the marker file and file header.

* From the front panel:
1. PressMode > Dual ARB > Select Waveform > Waveform Segments > Load Store until Load highlights.
2. Highlight the 1/Q filein the NVWFM catal og.
3. PressLoad Segment From NVWFM Memory.
4. PressReturn.

» Remotely send one of the following SCPI command to copy the 1/Q file, marker file and file header
information:

: MEMDry: CCPY[NAMVE] " <NWAEM fi | e_nanme>", " <WFML: fi | e_name>"
: MEMDry: CCPY[NAME] "<NVMKR: fi | e_name>", "<MKRL: fi | e_name>"

NOTE When you copy awaveform file or marker file information from volatile or non-volatile
memory, the waveform and associated marker and header files are all copied. Conversely,
when you delete an 1/Q file, the associated marker and header files are deleted. It is not

necessary to send separate commands to copy or delete the marker and header files.

Playing the Waveform

Play the waveform and use it to modul ate the RF carrier.

1. Select the waveform from the volatile memory waveform list:
e From the front panel:

a. Press Mode > Dual ARB > Select Waveform.

b. Highlight the desired waveform.

Chapter 4 207

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

C. PressSelect Waveform.
« Remotely send the following SCPI command:

[: SQURce}: RAD 0: ARB: WAVef or m "WFML: <f i | e_nane>"
2. Play the waveform:
e From the front panel:

a. Press ARB Off On until Onis highlighted.

b. PressMod On/0ff until the MOD ON annunciator appears on the display.

c. PressRF On/0ff until the RF ON annunciator appears on the display.

Remotely send the following SCPI commands:

[: SQURce] : RAD o: ARB[: STATe] ON
: QUTPut : MCDul ati on[: STATe] ON
:QUTPuUt [: STATe] ON

Verifying the Waveform

Perform this procedure after completing the stepsin the previous procedure, Playing the Waveform.

1. Connect the signal generator to an oscilloscope as shown in the figure.

~

Oscilloscope

SIGNAL GENERATOR

.

. Trigger Input

2. Set an active marker point on the first waveform point for marker one.

e From the front panel:

Press ARB Setup > Marker Utilities > Set Markers.

a
b. Highlight the same waveform selected in “Playing the Waveform” on page 207.

Press Set Markers > Marker 1234 to 1.

o

d. Press Set Markers Off All Points > Set Marker on First Point.

208

Chapter 4

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform

« Remotely send the following SCPI commands:
a [:SOURce]: RAD o: ARB: MARKer : CLEar: ALL "WFML: <fil e_nane>", 1
b. [: SOURce] : RAD o: ARB: MARKer : [SET] "WFML: <fi |l e_nanme>", 1,1, 1, 0.

3. Compare the oscilloscope display to the plot of the | and Q data from the text file you created when you
generated the data.

If the oscilloscope display, and the | and Q data plots differ, recheck your code. For detailed information
on programmatically creating and downloading waveform data, see “ Creating Waveform Data’ on
page 193 and “ Downloading Waveform Data’ on page 200. For information on the waveform data
reguirements, see “Waveform Data Requirements’ on page 168.

Chapter 4 209

Creating and Downloading Waveform Files
Using the Download Utilities

Using the Download Utilities

Adgilent provides free download utilities to download waveform datainto the signal generator. Thetablein

this section describes the capabilities of three such utilities.
For more information and to install the utilities, refer to the following URLSs:
* Agilent Signal Studio Toolkit: www.agilent.convfind/signal studio

This software provides a graphical interface for downloading files.

* Agilent IntuiLink for PSG/ESG Signal Generators: www.agilent.com/find/intuilink

This software places iconsin the Microsoft Excel and Word toolbar. Use the icons to connect to the

signal generator and open awindow for downloading files.

* PSG/ESG Download Assistant: www.agilent.com/find/downl oadassi stant

This software provides functions for the MATLAB environment to download waveform data.

Features Agilent Signal Agilent PSG/ESG

Studio Toolkit IntuiLink Download
Assistant

Downloads encrypted waveform files X

Downloads Signal Studio waveform files x1

Downloads complex MATLAB waveform data X

Downloads MATLAB files (.mat) X

Downloads unencrypted interleaved 16-hit 1/Q files 2

Interleaves and downloads earlier 14-bit E443xB | and Q X

files?

Swaps bytes for little endian order X

Downloads user-created marker files X X X

Performs scaling X X X

Starts waveform play back X X

Sends SCPI Commands and Queries X X

Builds a waveform sequence X X

1 Some Signal Studio products let you create and export waveform files to a PC. Signal Studio Toolkit downloads the exported

files.
2 ASCII or binary format.

210

Chapter 4

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

Downloading E443xB Signal Generator Files

To download earlier E443xB model | and Q files, use the same SCPI commands as if downloading files to
an E443xB signal generator. The signal generator automatically converts the E443xB files to the proper file
format as described in “Waveform Structure” on page 178 and storesthem in the signal generator’s memory.
This conversion process causes the signal generator to take more time to download the earlier fileformat. To
minimize the time to convert earlier E443xB filesto the proper file format, store E443xB file downloadsto
volatile memory, and then transfer them over to non-volatile (NVWFM) memory.

NOTE You cannot extract waveform data downloaded as E443xB files.

E443xB Data Format

The following diagram describes the data format for the E443xB waveform files. Thisfile structure can be
compared with the new style file format shown in “Waveform Structure” on page 178. If you create new
waveform files for the signal generator, use the format shown in “Waveform Data Requirements’ on

page 168.

E443xB ARB Data Format

Marker Data

- | 14 bits DAC Data

Volatile Memory Path

| File MSB Offset Binary LSB

ARBI /waveform name I 2 I 14 |

Q File

ARBQ /waveform name I 2 I 14 |
—>-|NIA|4— 14 bits DAC Data

Offset Binary
arb data

Storage Locations for E443xB ARB files

Place waveforms in either volatile memory or non-volatile memory. The signal generator supports the
E443xB directory structure for waveform file downloads.

Volatile Memory Storage Locations

e Juser/arbi/
e [user/arbg/

Chapter 4 211

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

Non-Volatile Memory Storage Locations

e Juser/nvarbi/
e Juser/nvarbqg/

Loading filesinto the above directories (volatile or non-volatile memory) does not actually store themin
those directories. Instead, these directories function as “pipes’ to the format translator. The signal generator
performs the following functions on the E443xB data:

» Convertsthe 14-bit | and Q datainto 16-hit data.
L eft shifts the data and appends two bits (zeros) before the least significant bit.

E443xB 14-Bit Data

| data Q data
(. - N - O
|11|10110110111001 0010100111011001

Marker bits 14 data bits Reserved bits 14 data bits

Left Shifts and Adds Zeros—Removes Marker and Reserved Bits
(E4438C 16-Bit Data Format)

16-bit | data 16-bit Q data
' - N . - N
11 10110110111001&% %9 10100111011001%9
Marker bits removed Bits added Reserved bits removed Bits added

e Creates amaker file and places the marker information, bits 14 and 15 of the E443xB | data, into the
marker file for markers one and two. Markers three and four, within the new marker file, are set to zero
(off).

Places the | Marker Bits into the E4438C Marker File

0011

/l Marker 1 and 2 bits from the E443xB | data

Marker 3 and 4 bits

» Interleavesthe 16-bit | and Q data creating one 1/Q file.
e Creates afile header with all parameters set to unspecified (factory default file header setting).

212 Chapter 4

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files

SCPI Commands

Use the following commands to download E443xB waveform files into the signal generator.

NOTE Before downloading waveform data into volatile memory, turn off the Dual ARB player by
pressing Mode > Dual ARB > ARB Off On until Off is highlighted or send the SCPI command
[SOURce] : RAD o: ARB[: STATe] CFF.

Extraction Method/ Command Syntax Options

Memory Type

SCPI/ : MVEM DATA "ARBI : <fil e_name>", <l waveform bl ock data>
volatile memory : MVEM DATA "ARBQ <fil e_nane>", <Q waveform dat a>

SCPI/ : MVEM DATA "NVARBI : <fil e_nane>", <l waveform bl ock data>
non-volatile memory | : MVEM DATA "NVARBQ <fil e _name>", <Q waveform bl ock dat a>

Thevariables<l wavef orm bl ock dat a>and <Q wavef or m bl ock dat a> represents datain the
E443xB file format. The string variable <f i | e_name> isthe name of the | and Q datafile. After
downloading the data, the signal generator associates a file header and marker file with the I/Q datafile.

Chapter 4 213

Creating and Downloading Waveform Files
Programming Examples

Programming Examples

The programming examples use GPIB or LAN interfaces and are written in the following languages:

o C++
MATLAB

* Visual Basic
» HPBasic

See Chapter 1 of this programming guide for information on interfaces and 1/0 libraries.
The example programs are also available on the signal generator Documentation CD-ROM, which allows
you to cut and paste the examples into an editor.

C++ Programming Examples
This section contains the following programming examples:

* “Creating and Storing Offset 1/Q Data—Big and Little Endian Order” on page 215
» “Creating and Storing 1/Q Data—L ittle Endian Order” on page 220

» “Creating and Downloading I/Q Data—Big and Little Endian Order” on page 222
* “Importing and Downloading I/Q Data—Big Endian Order” on page 227

* “Importing and Downloading Using VISA—Big Endian Order” on page 230

* “Importing, Byte Swapping, Interleaving, and Downloading | and Q Data—Big and Little Endian
Order” on page 235

214 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Creating and Storing Offset I/Q Data—Big and Little Endian Order
On the documentation CD, this programming example's nameis “offset_iq_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) follows the same coding
algorithm as the MATLAB programming example “Creating and Storing 1/Q Waveform” on page 243 and
performs the following functions:

» error checking

o datacreation

» datanormalization

e datascaling

« 1/Q signal offset from the carrier (single sideband suppressed carrier signal)

» byte swapping and interleaving for little endian order data

e | and Qinterleaving for big endian order data

» binary datafile storing to a PC or workstation

» reversal of the dataformatting process (byte swapping, interleaving, and normalizing the data)

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++ download
programming examples to download the file to the signal generator.

/'l This C++ exanple shows how to

/1 1.) Create a sinple |1 Q waveform

/1 2.) Save the waveforminto the ESG PSG Internal Arb format
I/ This format is the for the E4438C, E8267C, E8267D
I/ This format will not work with the ESG E443xB

/1 3.) Load the internal Arb fornmat file into an array

#i ncl ude <stdio. h>
#i ncl ude <string. h>

#i ncl ude <math. h>

const int PONTS = 1000; // Size of waveform

const char *conputer = “PCWN’;

int main(int argc, char* argv[])

{

Chapter 4 215

Creating and Downloading Waveform Files
Programming Examples

[1 1.) Create Sinple | Q Signal **#&xksstsksksskanksssnksksskanssssnsskss
/1 This signal is a single tone on the upper

/1l side of the carrier and is usually refered to as

/1 a Single Side Band Suppressed Carrier (SSBSC) signal.

/1 1t is nothing nore than a cosine wavefommin |

/1 and a sine waveformin Q

int points = PONTS; // Nunmber of points in the waveform

int cycles = 101; // Determines the frequency offset fromthe carrier
doubl e Iwave[PONTS]; // | waveform

doubl e Qnave[PO NTS]; // Q waveform

short int waveforn{2*PO NTS]; // Holds interleaved I/Q data

doubl e maxAnp = 0; // Used to Normalize waveform data

double m nAnp = 0; // Used to Nornmalize waveform data

doubl e scale = 1,

char buf; // Used for byte swappi ng

char *pChar; // Used for byte swapping

bool PC = true; // Set flag as appropriate

doubl e phaselnc = 2.0 * 3.141592654 * cycles / points;

doubl e phase = 0;

int i =0;
for(1=0; i<points; i++)
{

phase = i * phasel nc;

Iwave[i] = cos(phase);

Qnave[i] = sin(phase);

// 2) Save vvaveformln Internal forn«at khkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkdkhrhrhrhkhkkkdkhkdxtx
/1 Convert the | and Qdata into the internal arb format

/1l The internal arb format is a single waveformcontaining interleaved | Q

216 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

/1 data. The I/Q data is signed short integers (16 bits).
/1 The data has val ues scal ed between +-32767 where
11 DAC Val ue Description
11 32767 Maxi mum positive val ue of the DAC
I 0 Zero out of the DAC
11 - 32767 Maxi mum negative val ue of the DAC
/1 The internal arb expects the data bytes to be in Big Endian fornat.
/1 This is opposite of how short integers are saved on a PC (Little Endian).
/1l For this reason the data bytes are swapped before being saved.
/1 Find the Maxi mum anplitude in | and Qto nornalize the data between +-1
maxAnmp = |Iwave[0] ;
m nAnp = I wave[O0];
for(i=0; i<points; i++)
{
if(maxAmp < lwave[i])
maxAnp = lwavel[i];
else if(mnAmp > Iwave[i])
m nAnmp = Iwave[i];
if(maxAnp < Qunave[i])
maxAnp = Quaveli];
else if(mnAmp > Quave[i])
m nAmp = Quaveli];
}

maxAnp = fabs(maxAnp);

m nAnp = fabs(m nAnp);
if(mnAmp > maxAnp)
maxAnp = mi nAnp;
/1 Convert to short integers and interleave |I/Q data
scal e = 32767 /| nmaxAnp; /1 Watch out for divide by zero.

Chapter 4 217

Creating and Downloading Waveform Files
Programming Examples

for(i=0; i<points; i++)
{
waveforni2*i] = (short)floor(lwave[i]*scale + 0.5);
wavefornf2*i +1] = (short)floor(Qunave[i]*scale + 0.5);
}
/1 1f on a PC swap the bytes to Big Endian
if(strcnp(conputer,”PCWN') == 0)
/1if(PC)
{
pChar = (char *)&waveforni0]; /'l Character pointer to short int data
for(i1=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+1);
*(pChar+1) = buf;
pChar += 2;

}

/! Save the data to a file
/1 Use FTP or one of the downl oad assistants to download the file to the
/'l signal generator

char *filenane = “C:\\Tenp\\EsgTestFile";

FILE *stream = NULL;

stream = fopen(filename, “wtb”);// Open the file

if (streamr=NULL) perror (“Cannot Open File");

int numritten = fwite((void *)waveform sizeof(short), points*2, stream);

fclose(stream);// Close the file

/1 3.) Load the internal Arb fOrmat file *%*%*ktsksksskanknktnsskssksssnss
/1l This process is just the reverse of saving the waveform

/1 Read in waveform as unsigned short integers.

/1 Swap the bytes as necessary

/1 Normalize between +-1

218 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

/1 De-interleave the |/ Q Data

/1 Open the file and load the internal format data

stream = fopen(filename, “r+b”);// Open the file

if (streamr=NULL) perror (“Cannot Open File");

int nunread = fread((void *)waveform sizeof(short), points*2, stream);
fclose(stream);// Close the file

/1 1f on a PC swap the bytes back to Little Endian

if(strcrmp(conputer,”PCWN') == 0)

{
pChar = (char *)&waveforn{O]; /] Character pointer to short int data
for(1=0; i<2*points; i++)
{
buf = *pChar;
*pChar = *(pChar+1);
*(pChar+1) = buf;
pChar += 2;
}
}

/1 Normalize De-Interleave the I Q data
doubl e | wavel n[PO NTS] ;
doubl e Qwavel n[PO NTS] ;

for(i=0; i<points; i++)

{
Iwavel n[i] = waveforn|{2*i] / 32767.0;
Qnavel n[i] = waveforn2*i+1] / 32767.0;
}
return O;

Chapter 4 219

Creating and Downloading Waveform Files
Programming Examples

Creating and Storing I/Q Data—-Little Endian Order

On the documentation CD, this programming example's nameis “CreateSore Data_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrior 3.0) performs the following
functions:

error checking

data creation

byte swapping and interleaving for little endian order data
binary datafile storing to a PC or workstation

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++ download
programming examples to download the file to the signal generator.

#i ncl ude <i ostreanp

#i ncl ude <fstreanp

#i ncl ude <mat h. h>

#i ncl ude <stdlib. h>

usi ng namespace std

int main (void)
{
of stream out _stream /Il wite the I/Qdata to a file
const unsigned int SAWMPLES =200; /'l nunmber of sanple pairs in the waveform
const short AMPLI TUDE = 32000; /1 anplitude between O and full scale dac val ue
const double two_pi = 6.2831853
/lallocate buffer for waveform
short* igData = new short[2*SAVPLES];// need two bytes for each integer
if (ligData)
{
cout << "Could not allocate data buffer." << endl
return 1
}
220 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

out _streamopen("lQdata");// create a data file
if (out_streamfail())

{

cout << "lInput file opening failed" << endl;
exit(l);
}
//generate the sanple data for | and Q The | channel will have a sine

//wave and the Q channel will a cosine wave.

for (int i=0; i<SAMPLES; ++i)
{
igbata[2*i] = AMPLITUDE * sin(two_pi*i/(fl oat)SAMPLES);
i gDat a[2*i +1] = AMPLI TUDE * cos(two_pi*i/(fl oat) SAMPLES);
}
/1l make sure bytes are in the order MSB(npbst significant byte) first. (PC only).

char* cptr = (char*)iqData;// cast the integer values to characters

for (int i=0; i<(4*SAMPLES); i+=2)// 4*SAMPLES

{
char temp = cptr[i];// swap LSB and MSB bytes
cptri]=cptr[i+1];
cptr[i+1] =tenp;

}

/1 now wite the buffer to a file

out _streamwite((char*)iqData, 4*SAMPLES);

return O;

Chapter 4 221

Creating and Downloading Waveform Files
Programming Examples

Creating and Downloading 1/Q Data—Big and Little Endian Order
On the documentation CD, this programming example's nameis“CreateDwnLd_Data c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

e error checking

e datacreation

e datascaling

» text file creation for viewing and debugging data

» byte swapping and interleaving for little endian order data
» interleaving for big endian order data

e datasaving to an array (data block)

» datablock download to the signal generator

/1 This C++ programis an exanple of creating and scaling
/1 1 and Q data, and then downl oading the data into the
/1 signal generator as an interleaved I/Qfile

/1 This exanple uses a sine and cosine wave as the 1/Q
/1 data.

/1

/1 Include the standard headers for SICL programi ng

#i ncl ude <sicl.h>

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <mat h. h>

/1 Choose a GPIB, LAN, or RS-232 connection
char* instQOpenString ="Ian[gal gabhcpl]”
//char* instQpenString ="gpibo0, 19”

/1 Pick some nmaxi mum nunber of sanples, based on the
/1 amount of nmenory in your conputer and the signal generator

const int NUVMSAMPLES=500

222 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

int main(int argc, char* argv[])
{
/Il Create a text file to view the waveform
/1 prior to downloading it to the signal generator.

/1 This verifies that the data | ooks correct.

char *ofile = “c:\\tenmp\\iq.txt";

/Il Create arrays to hold the | and Q data

int idatal NUMSAMPLES] ;
int qdat al NUMSAMPLES] ;

/'l save the nunber of sanpes into nunmsanpl es

int nunmsanpl es = NUMSAMPLES;

/1 Fill the | and Q buffers with the sanple data

for(int index=0; index<nunsanples; index++)

{
/1 Create the | and Q data for the nunber of waveform
/1 points and Scale the data (20000 * ...) as a precentage
/1 of the DAC full scale (-32768 to 32767). This exanple
/1l scales to approximately 70% of full scale.
i dat a[i ndex] =23000 * sin((4*3.14*i ndex)/ nunsanpl es);
gdat a[i ndex] =23000 * cos((4*3. 14*i ndex)/ nunsanpl es);

/1 Print the | and Qvalues to a text file. View the data
/1 to see if its correct and if needed, plot the data in a
/'l spreadsheet to help spot any problens.

FILE *outfile = fopen(ofile, “wW);

Chapter 4 223

Creating and Downloading Waveform Files
Programming Examples

if (outfile==NULL) perror (“Error opening file to wite");
for(index=0; index<nunmsanpl es; index++)
{

fprintf(outfile, “%l, %\n", idata[index], qdata[index]);
}

fclose(outfile);

/1 Little endian order data, use the character array and for | oop.
/1 1f big endian order, comment out this character array and for | oop,

/1 and use the next loop (Big Endian order data).

/1 We need a buffer to interleave the I and Q data.

/!l 4 bytes to account for 2 | bytes and 2 Q bytes.

char i gbuf f er [NUMSAMPLES* 4] ;

/1l Interleave | and Q and swap bytes fromlittle
/1 endian order to big endian order.

for (i ndex=0; index<numsanples; index++)

{
int ivalue = idata[index];
int qvalue = qdata[index];
i gbuffer[index*4] = (ivalue >> 8) & OxFF; // high byte of i
i gbuffer[index*4+1] = ivalue & OxFF; /1 1ow byte of i
i gbuffer[index*4+2] = (qvalue >> 8) & OxFF; // high byte of g
i gbuffer[index*4+3] = gval ue & OxFF; /'l low byte of q
}

/1 Big Endian order data, uncomment the follow ng |lines of code.

/Il Interleave the | and Q data.

/'l short iqgbuffer[NUMVSAMPLES* 2] ; /1l Big endian order, uncoment this |ine

224

Chapter 4

/1 for(index=0; index<numsanples; index++)
11 {
11 i qbuf fer[index*2] = idata[index];
11 i gbuf fer[index*2+1] = qdata[index];
/1 }

/1 Open a connection to wite to the instrunent

I NST i d=i open(i nst OpenString);

it (lid)
{

fprintf(stderr,

return -1;

“iopen failed (%)\n",

/1
/1
/1
/1
/1

Bi g
Bi g
Big
Bi g
Bi g

/1 Declare variables to hold portions of the SCP

int bytesToSend

char s[20];

char cnd[200] ;

byt esToSend

sprintf(s,

/1 The SCPI
I Part 1
I Part 2
I Part 3
I Part 4

// Build parts 1, 2, and 3 for the

sprintf(cnd,

/1 Send parts 1, 2, and 3

iwite(id, cmd,

« o

nunmsanpl es*4;

, bytesToSend);

command has four parts

“: MEM DATA \ "WFML: FI LE1\ ",

: VEM DATA

“filename”, #

Creating and Downloading Waveform Files
Programming Examples

endi an
endi an
endi an
endi an

endi an

conmand

length of Part 3 when witten to a string

length of the data in bytes

the buffer

of data

strlen(cnd), 0, 0);

order,
order,
order,
order,

order,

i nst OpensString);

uncomment

uncomment

uncoment

uncomment

uncomment

/1 calcul ate the nunber of bytes

This is in s from above

#%1%d” ,

and Q data.

strlen(s),

byt esToSend) ;

this line
this line
this line
this line
this line

/]l create a string s with that nunber of bytes

Chapter 4

225

Creating and Downloading Waveform Files
Programming Examples

/1 Send part 4. Be careful to use the correct command here. |n nany
/1 programm ng | anguages, there are two nethods to send SCPI conmmands:

11 Method 1 = stop at the first ‘0" in the data

11 Method 2 = send a fixed nunber of bytes, ignoring ‘0" in the data.

/1 You nust find and use the correct command for Method 2.
iwite(id, iqgbuffer, bytesToSend, 0, 0);
/! Send a terminating carriage return

iwite(id, “\n", 1, 1, 0);

printf(“Loaded file using the E4438C, E8267C and E8267D format\n");

return O;

226

Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Importing and Downloading I/Q Data—Big Endian Order

On the documentation CD, this programming example's nameis“impDwnLd_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrier 3.0) assumes that the dataisin
big endian order and performs the following functions:

e error checking
e hinary fileimporting from the PC or workstation
e hinary file download to the signal generator

/1 Description: Send a file in blocks of data to a signal generator
/1

#i ncl ude <sicl.h>

#i nclude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

/| ATTENTI ON
/1 - Configure these three lines appropriately for your instrunent

11 and use before conpiling and runni ng

11
char* instOpenString = "gpib7,19"; //for LAN replace with “lan[<hostname or |P address>]"
const char* local SrcFile = "D:\\hone\\ TEST_ WAVE"; //enter file location on PC/ workstation

const char* instDestFile = "/USER BBGL/ WAVEFORM TEST_WAVE"; //for non-vol atile nenory
//remove BBGL fromfile path

/1 Size of the copy buffer
const int BUFFER SIZE = 100*1024;

int
mai n()
{
I NST i d=i open(i nst OpenString);
if (lid)
{
fprintf(stderr, "iopen failed (%)\n", instOpenString);

Chapter 4 227

Creating and Downloading Waveform Files
Programming Examples

return -1;

FILE* file = fopen(local SrcFile, "rb");

if (Mfile)

{
fprintf(stderr, "Could not open file: %\n", local SrcFile);
return O;

}

if(fseek(file, 0, SEEK. END) < 0)
{
fprintf(stderr,"Cannot seek to the end of file.\n");

return O;

long I enToSend = ftell(file);
printf("File size = %\ n", |enToSend);

if (fseek(file, 0, SEEK_SET) < 0)
{
fprintf(stderr,"Cannot seek to the start of file.\n");

return O;

char* buf = new char[BUFFER_SI ZE] ;

if (buf &% | enToSend)

{
/1 Prepare and send the SCPI comrand header
char s[20];
sprintf(s, "%l", |enToSend);

int lenLen = strlen(s);

228 Chapter 4

el se

fclo
iclo

retu

Creating and Downloading Waveform Files
Programming Examples

char s2[256];
sprintf(s2, "memdata \"%\", #%l%", instDestFile, |enLen, |enToSend);

iwite(id, s2, strlen(s2), 0, 0);

/1 Send file in BUFFER_SI ZE chunks

| ong nunRead,;

do

{
nunRead = fread(buf, sizeof(char), BUFFER SIZE, file);
iwite(id, buf, nunRead, 0, 0);

} while (nunmRead == BUFFER_SI ZE);

/1 Send the terminating newine and EOM
iwite(id, "\n", 1, 1, 0);

del ete [] buf;

fprintf(stderr, "Could not allocate nenory for copy buffer\n");

se(file);
se(id);

rn 0;

Chapter 4

229

Creating and Downloading Waveform Files
Programming Examples

Importing and Downloading Using VISA—Big Endian Order
On the documentation CD, this programming example's nameis*“DownLoad Visa_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) assumes that the dataisin big
endian order and performs the following functions:

e error checking
» hinary file importing from the PC or workstation
» hinary file download to the signal generator’s non-volatile memory

To load the waveform datato volatile (WFM1) memory, changethei nst Dest f i | e declaration to:
“USER/ BBGL/ WAVEFORM ™.

N R L R T T I,
/1 PROGRAM NAME: Downl oad_Vi sa_c++. cpp

/1

/1 PROGRAM DESCRI PTI ON: Sanpl e test programto downl oad ARB waveform data. Send a

/1 file in chunks of ascii data to the signal generator.

/1

/1 NOTE: You nust have the Agilent 1O Libraries installed to run this program

/1

/'l This exanple uses the LANTCPIP to download a file to the baseband generator's
/'l non-vol atile nenory. The program al |l ocates a nenory buffer on the PC or

/1 workstation of 102400 bytes (100*1024 bytes). The actual size of the buffer is
/1l limted by the menory on your PC or workstation, so the buffer size can be

/'l increased or decreased to neet your systemlinitations.

/1

/1 While this programuses the LAN TCPIP to downl oad a waveformfile into

/1 non-volatile nenory, it can be nodified to store files in volatile nenory

/1 WFML using GPIB by setting the instrQpenString = "TCPI PO: : XXX. XXX. XXX. XXX: : | NSTR"
/1 declaration with "GPIB::19::|NSTR'

/1

/1 The program al so includes sone error checking to alert you when problens arise
/1 while trying to download files. This includes checking to see if the file exists.

//**

/1 1 MPORTANT: Repl ace the xxx.xxX.xxX.xxx |P address in the instOpenString declaration

230 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

/1 in the code below with the | P address of your signal generator. (or you can use the
/1 instrument's hostname). Replace the local SrcFile and instDestFile directory paths

/'l as needed

//**

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

#i ncl ude <string. h>
#include "visa.h"

/1

/1 | MPORTANT

11 Configure the following three lines correctly before conpiling and running

char* instQpenString ="TCPl PO: : XXX.XXX. XXX. XXX:: I NSTR"; // your instrunent's |P address
const char* local SrcFile = "\\Files\\|1Q DataC'

const char* instDestFile = "/USER WAVEFORM | Q Dat aC"

const int BUFFER SI ZE = 100*1024;// Size of the copy buffer

int main(int argc, char* argv[])

{

Vi Sessi on defaul tRM vi

Vi Status status = 0;

status = vi OpenDefaul t RM &defaultRM ;// Open the default resource manager

/1 TO DO Error handling here

status = vi Open(defaul tRM instOpenString, VI_NULL, VI_NULL, &vi);

Chapter 4 231

Creating and Downloading Waveform Files
Programming Examples

if (status)// If any errors then display the error and exit the program

{
fprintf(stderr, "viOpen failed (%)\n", instOpenString);
return -1;

}

FILE* file = fopen(local SrcFile, "rb");// Open local source file for binary reading

if (!file) /1 If any errors display the error and exit the program

{
fprintf(stderr, "Could not open file: %\n", local SrcFile);

return O;

}

if(fseek(file, 0, SEEK END) < 0)

{
fprintf(stderr,"Cannot |seek to the end of file.\n");

return O;

long I enToSend = ftell (file);// Nunmber of bytes in the file

printf("File size = %d\n", |enToSend);

if (fseek(file, 0, SEEK_SET) < 0)

{
fprintf(stderr,"Cannot |Iseek to the start of file.\n");

return O;

unsi gned char* buf = new unsigned char[BUFFER SI ZE]; // Allocate char buffer nenory

232 Chapter 4

if (buf && | enToSend)
{

/1 Do not send the EQ (end of

/1 last one

vi Set Attribute(vi,

/1 Prepare and send the SCPI

char s[20];

sprintf(s, "%l", |enToSend);

int lenLen = strlen(s);

unsi gned char s2[256];

/1 Wite the command mmem data and t he header. The nunber

/'l nunmber of bytes and the actual

sprintf((char*)s2,

/1 Send the command and header to the signal

viWite(vi, s2, strlen((char*)s2),

| ong nunRead;

/1 Send file in BUFFER_SI ZE chunks to the signal

do

nunmRead = fread(buf,

VI _ATTR SEND END EN, 0);

conmmand header

"mmemdata \"%\", instDestFile,

si zeof (char), BUFFER_SI ZE,

Creating and Downloading Waveform Files

Programming Examples

instruction) terminator on any wite except the

I enLen represents the

of bytes is the variable | enToSend

| enLen, | enToSend);

Chapter 4

233

Creating and Downloading Waveform Files
Programming Examples

viWite(vi, buf, nunRead, 0);

} while (nunmRead == BUFFER_SI ZE);

/1 Send the termnating newine and EQ

viSetAttribute(vi, VI_ATTR SEND_END EN, 1):

char* newLine = "\n";

viWite(vi, (unsigned char*)newLine, 1, 0);

del ete [] buf;

el se

fprintf(stderr, "Could not allocate nenory for copy buffer\n");

fclose(file);

vi Cl ose(vi);

vi Cl ose(defaul tRM ;

return O;

234 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Importing, Byte Swapping, Interleaving, and Downloading | and Q Data—Big and Little Endian Order
On the documentation CD, this programming example's nameis “impDwnLd2_c++ .txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following

functions:

error checking

binary fileimporting (earlier E443xB or current model signal generators)

byte swapping and interleaving for little endian order data

datainterleaving for big endian order data

data scaling

binary file download for earlier E443xB data or current signal generator formatted data

/1 This C++ programis an exanple of loading | and Q

/1 data into an E443xB, E4438C, E8267C, or E8267D signha
/1 generator.

/1

/1 1t reads the | and Q data froma binary data file

/1 and then wites the data to the instrunent.

/1 Include the standard headers for SICL programi ng

#i ncl ude <sicl.h>

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

/1

Choose a GPIB, LAN, or RS-232 connection

char* instOpenString ="gpibo, 19”

/1
/1

Pi ck some maxi mum nunber of sanples, based on the

amount of nenory in your conputer and your waveforns.

const int MAXSAMPLES=50000

int

mai n(int argc, char* argv[])

Chapter 4 235

Creating and Downloading Waveform Files
Programming Examples

{
/1l These are the | and Q input files.
/1 Some conpilers will allow ‘/’ in the directory
/1 names. O der conpilers might need ‘\\' in the
/'l directory nanes. |t depends on your operating system
/1 and conpiler.
char *ifile = “c:\\Signal Generator\\data\\BurstAll.bin";
char *gfile = “c:\\Signal Generator\\data\\Burst AlQ bin";
/1 This is a text file to which we will wite the
/1 1 and Q data just for debugging purposes. It is
/1 a good progranm ng practice to check your data
/1 in this way before attenpting to wite it to
/1 the instrunent.
char *ofile = “c:\\Signal Generator\\data\\iq.txt"”;
/Il Create arrays to hold the | and Q data
int idata] MAXSAVPLES] ;
int qdat al MAXSAMPLES] ;
/1 Oten we nmust nodify, scale, or offset the data
/1 before loading it into the instrument. These
/1 buffers are used for that purpose. Since each
/1l sanple is 16 bits, and a character only holds
/1 8 bits, we nust make these arrays twice as |ong
/1 as the | and Q data arrays.
char i buf fer[MAXSAMPLES* 2] ;
char gbuffer [MAXSAMPLES* 2] ;
/'l For the E4438C, we nmight also need to interleave
/1 the | and Q data. This buffer is used for that
/! purpose. In this case, this buffer nust hold
236 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

/1 both | and Q data so it needs to be four tines
/'l as big as the data arrays.

char i gbuffer[MAXSAMPLES* 4] ;

/1 Declare variables which will be used | ater
bool done;
FILE *infile;

int index, numsanples, il, i2, ivalue;

/1 In this exanple, we'll assunme the data files have
/1 the | and Q data in binary formas unsigned 16 bit integers.
/'l This next block reads those binary files. |f your
/! data is in some other format, then replace this block
/1 with appropriate code for reading your format.
/1 First read | val ues
done = fal se;
i ndex = 0;
infile = fopen(ifile, “rb");
if (infile==NULL) perror (“Error opening file to read”);
whi | e(! done)
{
il = fgetc(infile); // read the first byte
i f(i1l==EOF) break;
i2 = fgetc(infile); [// read the next byte
i f(i2==EOF) break;
i val ue=i 1+i 2* 256; /1 put the two bytes together
/1 note that the above format is for a little endian
/] processor such as Intel. Reverse the order for
/1 a big endian processor such as Mdtorola, HP, or Sun
i dat a[i ndex++] =i val ue;

i f (1 ndex==MAXSAMPLES) br eak;

Chapter 4 237

Creating and Downloading Waveform Files
Programming Examples

fclose(infile);

/1 Then read Q val ues
index = 0;
infile = fopen(qgfile, “rb");
if (infile==NULL) perror (“Error opening file to read”);
whi | e(! done)
{
il =fgetc(infile); [// read the first byte
i f(i1l==EOF) break;
i2 =fgetc(infile); // read the next byte
i f(i2==ECF) break;
i val ue=i 1+i 2* 256; /1 put the two bytes together
/1 note that the above format is for a little endian
/'l processor such as Intel. Reverse the order for
/1 a big endian processor such as Mdtorola, HP, or Sun
gdat a[i ndex++] =i val ue;
i f (1 ndex==MAXSAMPLES) br eak;
}

fclose(infile);

/!l Remenber the number of sanples which were read fromthe file.

nunmsanpl es = i ndex;

/1 Print the | and Q values to a text file. |If you are
/1 having trouble, look in the file and see if your | and
/1 Q data | ooks correct. Plot the data fromthis file if
/1 that hel ps you to diagnose the problem

FILE *outfile = fopen(ofile, “wW);

if (outfile==NULL) perror (“Error opening file to wite");
for(index=0; index<numsanpl es; index++)

{

238 Chapter 4

}

Creating and Downloading Waveform Files
Programming Examples

fprintf(outfile, “9%l, %\ n”, idata[index], qdata[index])

fclose(outfile);

/1
/1
/1
/1

/1
/1

/1
/1
/1
/1
/1
/1
/1
/1

/1
/1
/1
/1

The E443xB, E4438C, E8267C or E8267D all use big-endi an
processors. |f your software is running on a little-endian
processor such as Intel, then you will need to swap the

bytes in the data before sending it to the signal generator

The arrays ibuffer and qbuffer are used to hold the data

after any byte swapping, shifting or scaling

In this exanple, we'll assune that the data is in the format
of the E443xB without markers. |In other words, the data
is in the range 0-16383

0 gives negative full-scal e output

8192 gives 0 V out put

16383 gives positive full-scal e output

If this is not the scaling of your data, then you will need

to scale your data appropriately in the next two bl ocks

ibuffer and gbuffer will hold the data in the E443xB f ornat
No scaling is needed, however we need to swap the byte order
on a little endian conputer. Renpve the byte swapping

if you are using a big endian conputer

for (i ndex=0; index<numsanples; index++)

{

int ivalue = idata[index];

int qvalue = qdata[index];

i buf fer[index*2] = (ivalue >> 8) & OxFF; // high byte of
i buffer[index*2+1] = ivalue & OxFF; /'l | ow byte of
gbuf fer [i ndex* 2] = (qvalue >> 8) & OxFF; // high byte of q

Chapter 4 239

Creating and Downloading Waveform Files
Programming Examples

gbuf fer[index*2+1] = qval ue & OxFF; /1 1ow byte of q

/1 iqgbuffer will hold the data in the E4438C, E8267C, E8267D

/1 format. In this format, the | and Q data is interleaved

/1l The data is in the range -32768 to 32767

11 - 32768 gives negative full-scal e output
11 0 gives 0 V output
11 32767 gives positive full-scale output

/'l Fromthese ranges, it appears you should of fset the

/1 data by 8192 and scale it by 4. However, due to the
/1 interpolators in these products, it is better to scale
/! the data by a nunber less than four. Commonly a good
/1 choice is 70% of 4 which is 2.8

/1 By default, the signal generator scales data to 70%
/1 1f you scale the data here, you may want to change the
/1 signal generator scaling to 100%

/1 Also we need to swap the byte order on a little endian
/1 conmputer. This code also works for big endian order data
/1 since it swaps bytes based on the order

for(index=0; index<numsanpl es; index++)

{
int iscaled = 2.8*(idata[index]-8192); // shift and scale
int gscaled = 2.8*(qdata[index]-8192); // shift and scale
i gbuf fer[index*4] = (iscaled >> 8) & OxFF; // high byte of
igbuffer[index*4+1] = iscaled & OxFF; /1 1ow byte of
i gbuffer[index*4+2] = (qgscaled >> 8) & OxFF; // high byte of g
i gbuffer[index*4+3] = qgscaled & OxFF; // low byte of q

}

/1 Open a connection to wite to the instrunment

I NST i d=i open(i nst OpenString);

240 Chapter 4

if (lid)

{
fprintf(stderr, “iopen failed (%)\n”, instOpenString);
return -1;

}

/1 Declare variables which will be used | ater

Creating and Downloading Waveform Files
Programming Examples

int bytesToSend;

char s[20];
char cnd[200];

/1 The E4438C,

E8267C and EB267D accept the E443xB format.

/1l so we can use this next section on any of these signal

/1 However the E443xB format only uses 14 bits.

byt esToSend =

sprintf(s, “%l”, bytesToSend); // create a string s with that

generators.

nunmsanpl es* 2; /1 calcul ate the nunber of bytes

/1 The SCPI command has four parts.

I Part 1 =
I Part 2 =
I Part 3 =
I Part 4 =

: MEM DATA “fil ename”,

length of Part 3 when witten to a string

length of the data in bytes. This is in s from above.

the buffer of data

/! Build parts 1, 2, and 3 for the | data.

sprintf(cnd, “

/'l Send parts

: MEM DATA \"ARBI : FI LE1\", #%%d”, strlen(s),
1, 2, and 3

iwite(id, cnd, strlen(cnd), 0, 0);

byt esToSend) ;

/1 Send part 4. Be careful to use the correct command here. |n nmany

/'l programmi ng | anguages,

I Met hod 1
I Met hod 2

= stop at the first ‘0" in the data

= send a fixed nunber of bytes, ignoring ‘0O

there are two nmethods to send SCPI commands:

in the data.

nunmber of bytes

Chapter 4

241

Creating and Downloading Waveform Files
Programming Examples

/1 You must find and use the correct command for Method 2.
iwite(id, ibuffer, bytesToSend, 0, 0);
/1 Send a terminating carriage return

iwite(id, “\n", 1, 1, 0);

/1 1dentical to the section above, except for the Q data.

sprintf(cnd, “:MEM DATA \"ARBQ FI LE1\", #%%d”, strlen(s), bytesToSend);
iwite(id, cnd, strlen(cnd), 0, 0);

iwite(id, gbuffer, bytesToSend, 0, 0);

iwite(id, “\n", 1, 1, 0);

printf(“Loaded FILEl using the E443xB format\n");

/1 The E4438C, E8267C and E8267D have a newer faster format which
/1l allows 16 bits to be used. However this format is not accepted in

/1 the E443xB. Therefore do not use this next section for the E443xB.

printf(“Note: Loading FILE2 on a E443xB will cause \"ERROR 208, [/Oerror\”"\n");

/1 ldentical to the | and Q sections above except

11 a) The | and Q data are interleaved

11 b) The buffer of I+Qis twice as long as the | buffer was.

11 c) The SCPI command uses WFML i nstead of ARBI and ARBQ

byt esToSend = nunsanpl es*4;

sprintf(s, “%l”, bytesToSend);

sprintf(cnd, “:nmemdata \"WML: FI LE2\", #%%", strlen(s), bytesToSend);
iwite(id, cmd, strlen(cnd), 0, 0);

iwite(id, iqgbuffer, bytesToSend, 0, 0);

iwite(id, “\n", 1, 1, 0);

printf(“Loaded FILE2 using the E4438C, E8267C and E8267D format\n”);

return O;

242 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

MATLAB Programming Example

Creating and Storing I/Q Waveform
On the documentation CD, this programming example's name is “offset_iq_ml.m.”

ThisMATLAB programming example foll ows the same coding a gorithm as the C++ programming example
“Creating and Storing Offset 1/Q Data—Big and Little Endian Order” on page 215 and performs the
following functions:

e error checking

» datacrestion

* datanormalization

o datascaling

* 1/Q signal offset from the carrier (single sideband suppressed carrier signal)

» byte swapping and interleaving for little endian order data

* | and Qinterleaving for big endian order data

* binary datafile storing to a PC or workstation

» reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

function main

% Usi ng MatLab this exanpl e shows how to

%1.) Create a sinple |1 Q waveform

% 2.) Save the waveforminto the ESG PSG Internal Arb format
% This format is for the E4438C, E8267C, and E8267D

% This format will not work with the earlier E443xB ESG

% 3.) Load the internal Arb format file into a MatLab array

% 1.) Create Simple |Q Si gnal *% s stk s kot snksskdnknkdnknksnknkssix
% This signal is a single tone on the upper

% side of the carrier and is usually refered to as

% a Single Side Band Suppressed Carrier (SSBSC) signal.

%1t is nothing nore than a cosine waveformin |

% and a sine waveformin Q

%

points = 1000; % Nunber of points in the waveform

cycles = 101; % Det ermi nes the frequency offset fromthe carrier

Chapter 4 243

Creating and Downloading Waveform Files
Programming Examples

phasel nc = 2*pi *cycl es/ points;

phase = phaselnc * [0: points-1];

Iwave = cos(phase);

Qnave = sin(phase);

%2‘) Save waveformin internal foOrmat *****xxkkkkhkkkhkkkhkkkhkhkhkkkkkk* x %k
% Convert the | and Qdata into the internal arb format

% The internal arb format is a single waveform containing interleaved | Q
% data. The I/ Q data is signed short integers (16 bits).

% The data has val ues scal ed between +-32767 where

% DAC Val ue Description

% 32767 Maxi mum positive val ue of the DAC
% 0 Zero out of the DAC
% -32767 Maxi mum negati ve val ue of the DAC

% The internal arb expects the data bytes to be in Big Endian format.
% This is opposite of how short integers are saved on a PC (Little Endian).

% For this reason the data bytes are swapped before bei ng saved.

% I nterleave the I Q data
waveform(1l: 2: 2*poi nts) = | wave;
wavef orn(2: 2: 2*poi nts) = Quave;
% | wave; Qnave] ;

%wavef orm = waveform(:)’;

% Normal i ze the data between +-1

waveform = waveform / max(abs(waveform); % Wat ch out for divide by zero.

% Scal e to use full range of the DAC

wavef orm = round(waveform * 32767); % Data is now effectively signed short integer
val ues
244 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

% wavef orm = round(waveform * (32767 / max(abs(waveform))); % More efficient than
previous two steps!

% PRESERVE THE BI T PATTERN but convert the waveformto

% unsi gned short integers so the bytes can be swapped.

% Note: Can't swap the bytes of signed short integers in MatlLab.
wavef orm = ui nt 16(nod(65536 + waveform 65536)); %

%I1f on a PC swap the bytes to Big Endi an
if strcnmp(conputer, ‘PCWN)
wavef orm = bitor(bitshift(waveform-8), bitshift(waveform8));

end

% Save the data to a file

% Not e: The waveformis saved as unsigned short integers. However,
% the acual bit pattern is that of signed short integers and
% that is how the ESG PSG interprets them

filename = ‘ C:\ Tenp\ EsgTestFile’;

[FID, message] = fopen(filename,’w);% Open a file to wite data
if FID==-1 error(‘Cannot Open File'); end

fwrite(FID waveform’'unsigned short’);%wite to the file

fclose(FID); % close the file

%3.) Load the internal Arb fOrmat file *%%stssss s snktssnssnktnkasssssnss
% This process is just the reverse of saving the waveform

% Read in waveform as unsi gned short integers.

% Swap the bytes as necessary

% Convert to signed integers then normalize between +-1

% De-interleave the I/Q Data

% Open the file and load the internal fornmat data

[FID, message] = fopen(filename, r’);% Open file to read data

Chapter 4 245

Creating and Downloading Waveform Files
Programming Examples

if FID==-1 error(‘Cannot Open File'); end
[internal Wave,n] = fread(FID, ‘uintl6');%read the 1Qfile

fclose(FID);%close the file

i nt ernal Wave = internal Wave’; % Conver from columm array to row array

%I1f on a PC swap the bytes back to Little Endian
if strecnp(computer, ‘PCWN) %Put the bytes into the correct order
i nt ernal Wave= bi tor (bitshift(internal Wave, -8), bitshift (bitand(internal Wave, 255),8));

end

% convert unsigned to signed representation
i nt ernal Wave = doubl e(i nternal Wave);
tnmp = (internal Wave > 32767.0) * 65536;

igWave = (internal Wave - tnp) ./ 32767, % and nornalize the data

% De-Interleave the I Q data
Iwavel n = i gWave(1l: 2:n);

Qnavel n = i g\Wave(2: 2: n);

246 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Visual Basic Programming Examples

Creating 1/Q Data—Little Endian Order
On the documentation CD, this programming example’'snameis“Create |QData _vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, uses little endian order data, and
performs the following functions:

e error checking

* | an Qinteger array creation

* | an Q datainterleaving

» byte swapping to convert to big endian order
* binary datafile storing to a PC or workstation

Oncethefileis created, you can download the file to the signal generator using FTP (see “ FTP Procedures’
on page 191).

Uk kR ko ko kK ok ok ko k ok ko ok ok ko ok ok ko ok ok ko kR ko kR kR Kk kR Kk kR Kk Kk
Program Nanme: Create_| QData
Program Descri ption: This program creates a sine and cosine wave using 200 |/ Q data
sanples. Each | and Q value is represented by a 2 byte integer. The sanple points are

' cal cul ated, scaled using the AVPLI TUDE constant of 32767, and then stored in an array
naned i q_data. The AMPLI TUDE scaling allows for full range |/Q nodul ator DAC val ues.
Data must be in 2's conplemant, MSB/LSB big-endian format. |f your PC uses LSB/ MSB

' format, then the integer bytes nmust be swapped. This program converts the integer
array values to hex data types and then swaps the byte positions before saving the

data to the 1QDataVB file.

IR RS EEE R EE R R R R R EEEEEEEEEEEEEEEREEREEREEREEREEEEEEEEESRERESEEEEEEEIEIEEEREEEEE TR TR EEEEES

Private Sub Create_| QData()
Di mindex As Integer

Di m AMPLI TUDE As | nt eger
Di m pi As Doubl e
Dim | oByte As Byte

Di m hi Byte As Byte

Dim 1l oHex As String

Di m hi Hex As String

DimstrSrc As String

Chapter 4 247

Creating and Downloading Waveform Files
Programming Examples

Di m nunPoi nts As | nteger
Di m Fi |l eHandl e As | nteger
Dim data As Byte
Dimiq_data() As Byte

DimstrFilenane As String

strFilenane = "C:\1Q Dat avB"

Const SAMPLES = 200 ' Nunber of sanple PAIRS of | and Q integers for the waveform

AVPLI TUDE = 32767 ' Scale the anplitude for full range of the signal generators
' 1/ Q nodul at or DAC

pi = 3.141592

DmintlQData(0 To 2 * SAMPLES - 1) 'Array for | and Q integers: 400
ReDimig_data(0 To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for each integer value: 800

"Create an integer array of |/Q pairs

For index = 0 To (SAWMPLES - 1)
intlQData(2 * index) = Clnt(AVPLITUDE * Sin(2 * pi * index / SAWMPLES))
intlQData(2 * index + 1) = Clnt (AWPLI TUDE * Cos(2 * pi * index / SAMPLES))
Next i ndex

' Convert each integer value to a hex string and then wite into the iq_data byte array
' MSB, LSB ordered
For index = 0 To (2 * SAMPLES - 1)

strSrc = Hex(intlQ Data(index)) 'convert the integer to a hex val ue

If Len(strSrc) <> 4 Then
strSrc = String(4 - Len(strSrc), "0") & strSrc 'Convert to hex format i.e "800F
End | f 'Pad with 0's if needed to get 4

‘characters i.e '0" to "0000"

248 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

hi Hex = M d$(strSrc, 1, 2) '"Get the first two hex val ues (NMSB)

| oHex M d$(strSrc, 3, 2) 'Cet the next two hex val ues (LSB)

loByte = CByte("&H' & | oHex) 'Convert to byte data type LSB
hiByte = CByte("&H' & hiHex) 'Convert to byte data type MSB

ig_data(2 * index) = hiByte '"MSB into first byte

ig_data(2 * index + 1) = loByte 'LSB into second byte

Next i ndex

"Now write the data to the file

Fi l eHandl e = FreeFil e() "CGet a file nunber

numPoi nts = UBound(ig_data) 'Get the nunber of bytes in the file

Open strFilename For Binary Access Wite As #Fil eHandl e Len = nunPoints + 1

On Error GoTo file_error

For index = 0 To (nunPoints)

data = i g_data(index)

Put #Fil eHandl e, index + 1, data 'Wite the I/Qdata to the file

Next i ndex

Cl ose #Fil eHandl e

Call MsgBox("Data witten to file " & strFilenanme, vbOKOnly, "Downl oad")

Exit Sub

Chapter 4 249

Creating and Downloading Waveform Files
Programming Examples

file_error:
MsgBox Err. Description

Cl ose #Fil eHandl e

End Sub

250 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Downloading 17Q Data
On the documentation CD, this programming example's nameis“Download_File vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, downloads the file created in
“Creating 1/Q Data—L ittle Endian Order” on page 247 into non-volatile memory using aLAN connection.
To use GPIB, replacethei nst OpenSt ri ng object declaration with“GPI B: : 19: : | NSTR". To
download the datainto volatile memory, changethei nst Dest f i | e declaration to

“USER/ BBGL/ WAVEFORM .

NOTE The example program listed here uses the VISA COM /O API, which includes the
W i t el EEEBI ock method. This method eliminates the need to format the download
command with arbitrary block information such as defining number of bytes and byte
numbers. Refer to “SCPI Command Line Structure” on page 187 for more information.

This program also includes some error checking to alert you when problems arise while trying to download
files. Thisincludes checking to seeif the file exists.

RS RS E SRR R R R R R R R EEEEEEEEEEEEEEEEEEEREEREEREEREEREEREESEEEEESEEEEEEEEEEEEEEEEEE]

Program Nanme: Downl oad_Fil e
Program Descri ption: This programuses Mcrosoft Visual Basic 6.0 and the Agil ent

VISA COM I/ O Library to downl oad a waveformfile to the signal generator.

The program downl oads a file (the previously created ‘1 QDataVvB file) to the signal
generator. Refer to the Programm ng Cuide for informati on on binary

data requirenents for file downl oads. The waveformdata 'IQ DataVB' is

downl oaded to the signal generator's non-volatile nmenory(NVWFM

" | USER/ WAVEFORM | Q Dat aVB". For vol atile menory(WML) download to the

" | USER/ BBGL/ WAVEFORM | Q Dat aVB" directory.

You must reference the Agilent VI SA COM Resource Manager and VI SA COM 1.0 Type
Library in your Visual Basic project in the Project/References nenu.

The VISA COM 1.0 Type Library, corresponds to VISACOMtlb and the Agil ent

VI SA COM Resour ce Manager, corresponds to AgtRM DLL.

The VI SA COM 488.2 Fornatted 1/0 1.0, corresponds to the BasicFormattedl O dl |
Use a statenent such as "DimlInstr As VisaConLib. Fornattedl O488" to

create the formatted 1/ O reference and use

Chapter 4 251

Creating and Downloading Waveform Files
Programming Examples

' "Set Instr = New VisaConlib. Formattedl O488" to create the actual object.

R R SRR R R R R R R R EEEEEEEEEEEEEEEEEEEEEREEREEREEREEEEEEEEEEEEEEREREREEEEEEEEEREE]

' | MPORTANT: Use the TCPIP address of your signal generator in the rm Open

declaraion. If you are using the GPIB interface in your project use "GPIB::19::|NSTR'

in the rm Open decl arati on.

R R R R R R R R X

Private Sub Downl oad_Fil e()
' The following four lines declare 10 objects and instantiate them
Dimrm As Vi saConli b. Resour ceManager

Set rm = New Agi | ent RMLi b. SRMCl s

Di m Si gGen As Vi saConli b. For mat t edl 0488

Set SigGen = New Vi saConLi b. Fornatt edl 0488

' NOTE: Use the | P address of your signal generator in the rm Open declaration

Set SigGen.|1O = rm Open("TCPI PO: : 000. 000. 000. 000")

Dimdata As Byte
Dimiq_data() As Byte

Di m Fil eHandl e As | nteger
Di m nunPoi nts As | nteger
Di mindex As Integer

Di m Header As String

Di m response As String
Dim hiByte As String
DimloByte As String

DimstrFilename As String

strFilenane = "C:\1Q DataVB" ‘File Name and | ocation on PC

‘Data will be saved to the signal generator’s NVWFM
‘| USER/ WAVEFORM | Q Dat aVB directory.

252 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Fi l eHandl e = FreeFil e()

On Error GoTo errorhandl er

Wth SigGen 'Set up the signal generator to accept a downl oad
.1 O Ti neout = 5000 " Ti meout 50 seconds
.WiteString "*RST" 'Reset the signal generator.

End Wth

numPoints = (FileLen(strFilenane)) 'Get nunber of bytes in the file: 800 bytes

ReDi mig_data(0 To nunmPoints - 1) "Dinmension the iqg_data array to the
‘size of the 1QDataVB file: 800 bytes

Open strFilename For Binary Access Read As #FileHandle 'Open the file for binary read
On Error GoTo file_error

For index = 0 To (nunPoints - 1) 'Wite the 1QDataVB data to the iqg_data array
Get #FileHandl e, index + 1, data '(index+1) is the record number
ig_data(index) = data

Next i ndex

Cl ose #Fil eHandl e 'Close the file

"Wite the command to the Header string. NOTE: syntax

Header = "MEM DATA ""/USER/ WAVEFORM | Q Dat avB"", "

"Now write the data to the signal generator's non-volatile menory (NVWM

Si gGen. Wi tel EEEBl ock Header, iqg_data

Si gGen. WiteString "*OPC?" "Wait for the operation to conplete

Chapter 4 253

Creating and Downloading Waveform Files
Programming Examples

response = SigGen. ReadString ' Signal generator reponse to the OPC? query

Cal |l MsgBox("Data downl oaded to the signal generator", vbOKOnly, "Download")

Exit Sub
errorhandl er:

MsgBox Err. Description, vbExclamation, "Error Cccurred", Err.HelpFile, Err.Hel pContext
Exit Sub
file_error:

Cal | MsgBox(Err.Description, vbOKOnly) 'Display any error nessage

Cl ose #Fil eHandl e

End Sub

254 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

HP Basic Programming Examples
This section contains the following programming examples:

» “Downloading Waveform Data Using HP BASIC for Windows®” on page 255

» “Downloading Waveform Data Using HP BASIC for UNIX” on page 258

» “Downloading E443xB Waveform Data Using HP BASIC for Windows’ on page 261
» “Downloading E443xB Waveform Data Using HP Basic for UNIX” on page 263

Downloading Waveform Data Using HP BASIC for Windows®
On the documentation CD, this programming example's name is “ hpbasicWin.txt.”

Thefollowing program will download awaveform using HP Basic for Windows into volatile ARB memory.
The waveform generated by this program is the same as the default SI NE_ TEST WMwaveform file
available in the signal generator’s waveform memory. This code is similar to the code shown for BASIC for
UNIX but there is aformatting differencein line 130 and line 140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #'

Asdiscussed at the beginning of this section, | and Q waveform datais interleaved into onefilein 2's
compliment form and a marker file is associated with this I/Q waveform file.

Inthe Qut put commands, USI NG “ #, K’ formatsthe data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The“ K’ instructs HP Basic to output the following numbers or strings in the default format.

10 ! RE-SAVE "BASIC Wn_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | nt _array(1: Num poi nt s*2)

40 DEG

50 FOR I =1 TO Num poi nts*2 STEP 2

60 Int_array(l)=INT(32767*(SI N(I*360/ Num_points)))
70 NEXT |

80 FOR | =2 TO Num poi nts*2 STEP 2

90 Int_array(l)=INT(32767*(COS(|*360/ Num points)))
100 NEXT |

Windows and MS Windows are U.S registered trademarks of Microsoft Corporation.

Chapter 4 255

Creating and Downloading Waveform Files
Programming Examples

110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

PRI NT "Data Cener at ed"

Nbyt es=4* Num _poi nts

ASSI GN @sg TO 719

ASSI GN @sgb TO 719; FORVMAT MsSB FI RST
Nbyt es$=VAL$(Nbyt es)

Ndi gi t s=LEN(Nbyt es$)

Ndi gi t s$=VAL$(Ndi gi t s)

VAIT 1

QUTPUT @sg USI NG "#, K';": MVEM DATA ""WFML: data_file"", #"
OUTPUT @sg USI NG "#, K"; Ndi gi t s$
QUTPUT @sg USI NG "#, K'; Nbyt es$

WAIT 1

OQUTPUT @sgb; I nt _array(*)

OUTPUT @sg; END

ASSI GN @sg TO *

ASSI GN @sgb TO *

PRI NT

PRI NT "*END*"

END

Program Comments

10: Program file name
20: Sets the number of pointsin the waveform.
30: Allocates integer data array for | and Q waveform points.
40: Sets HP BASIC to use degrees for cosine and sine functions.
50: Sets up first loop for | waveform points.
60: Calculate and interleave | waveform points.
70: End of loop
80 Sets up second loop for Q waveform points.
0: Calculate and interleave Q waveform points.
256 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Program Comments (Continued)

100: End of loop.

120: Calculates number of bytesin I/Q waveform.

130: Opens an I/0 path to the signal generator using GPIB. 7 isthe address of the GPIB card
in the computer, and 19 is the address of the signal generator. This I/O path is used to
send ASCII datato the signal generator.

140: Opens an 1/0 path for sending binary data to the signal generator.

150: Creates an ASCI| string representation of the number of bytesin the waveform.

160 to 170: Finds the number of digitsin Nbytes.

190: Sendsthe first part of the SCPI command, MEM:DATA along with the name of thefile,
data_fil e, that will receivethe waveform data. Thename, dat a_fi | e, will appear
in the signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that ESGb isthe binary 1/0 path.

240: Sends an End-of-Line to terminate the transmission.

250t0260: | Closesthe connections to the signal generator.

290: End the program.

Chapter 4

257

Creating and Downloading Waveform Files
Programming Examples

Downloading Waveform Data Using HP BASIC for UNIX
On the documentation CD, this programming example's name is “ hpbasicUx.txt.”

The following program shows you how to download waveforms using HP Basic for UNIX. The codeis
similar to that shown for HP BASIC for Windows, but there is a formatting difference in line 130 and line
140.

To download into non-volatile memory, replace line 190 with:
190 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #'

Asdiscussed at the beginning of this section, | and Q waveform datais interleaved into onefilein 2's
compliment form and a marker file is associated with this I/Q waveform file.

Inthe Qut put commands, USI NG “ #, K’ formatsthe data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The“K” instructs HP BASIC to output the following numbers or strings in the default format.

10 !' RE-SAVE "UNI X_file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | nt _array(1: Num poi nt s*2)

40 DEG

50 FOR I =1 TO Num poi nts*2 STEP 2

60 Int_array(l)=INT(32767*(SI N(I*360/ Num_points)))
70 NEXT |

80 FOR | =2 TO Num poi nts*2 STEP 2

90 Int_array(l)=INT(32767*(COS(|*360/ Num_points)))
100 NEXT |

110 PRI NT "Data generated "

120 Nbyt es=4* Num _poi nt's

130 ASSIGN @sg TO 719; FORVAT ON

140 ASSI GN @sgb TO 719; FORMAT OFF

150 Nbyt es$=VAL$(Nbyt es)

160 Ndi gi t s=LEN(Nbyt es$)

170 Ndi gi t s$=VAL$(Ndi gi t s)

180 VAIT 1

190 QUTPUT @sg USI NG "#, K';": MVEM DATA ""WFML: data_file"", #"
200 OUTPUT @Esg USI NG "#, K'; Ndi gi t s$

258 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

210 OUTPUT @sg USI NG "#, K"; Nbyt es$

220 WAIT 1

230 QUTPUT @Esgb; I nt_array(*)

240 WAIT 2

241 OQUTPUT @Esg; END

250 ASSI GN @sg TO *
260 ASSIGN @sgb TO *

270 PRI NT

280 PRI NT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of pointsin the waveform.

30: Allocates integer data array for | and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for | waveform points.

60: Calculate and interleave | waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

0: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytesin I/Q waveform.

130: Opens an 1/0 path to the signal generator using GPIB. 7 isthe address of the GPIB card
in the computer, and 19 is the address of the signal generator. This I/O path is used to
send ASCII datato the signal generator.

140: Opens an 1/0 path for sending binary data to the signal generator.

150: Creates an ASCI|I string representation of the number of bytesin the waveform.

160 to 170: Finds the number of digitsin Nbytes.

Chapter 4

259

Creating and Downloading Waveform Files
Programming Examples

Program Comments (Continued)

190: Sendsthefirst part of the SCPI command, MEM:DATA along with the name of thefile,
data fil e,that will receivethewaveform data. Thename, data_fi |l e, will appear
in the signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCI| header.

230: Sends the binary data. Note that ESGb isthe binary 1/0 path.

240: Sends an End-of-Line to terminate the transmission.

250t0260: | Closesthe connections to the signal generator.

290: End the program.

260 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Downloading E443xB Waveform Data Using HP BASIC for Windows
On the documentation CD, this programming example’'s name is “ hpbasic\Mn2.txt.”

The following program shows you how to download waveforms using HP Basic for Windows into volatile
ARB memory. This program is similar to the following program example as well as the previous examples.
The difference between BASIC for UNIX and BASIC for Windows is the way the formatting, for the most
significant bit (MSB) on lines 110 and 120, is handled.

To download into non-volatile ARB memory, replace line 80 with:

160 OUTPUT @ESG USING "#K";":MMEM:DATA ""NVARBI:testfile"", #'
and replace line 130 with:

210 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBQ:testfile"", #'

First, the | waveform datais put into an array of integers called | wWf m dat a and the Q waveform datais put
into an array of integers called Qwfm_data. The variable Noyt es is set to equal the number of bytesin the
waveform data. This should be twice the number of integersin | wf m dat a, since an integer is 2 bytes.
Input integers must be between 0 and 16383.

Inthe Qut put commands, USI NG “ #, K’ formatsthe data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The“ K’ instructs HP Basic to output the following numbers or strings in the default format.

10 | RE-SAVE "ARB IQ Wn file"

20 Num_poi nt s=200

30 ALLOCATE | NTEGER | wf m dat a(1: Num_poi nts), QM m dat a(1: Num _poi nt s)
40 DEG

50 FOR I =1 TO Num poi nts

60 I wf m dat a(1) =I NT(8191* (SI N(| *360/ Num_poi nt s)) +8192)
70 Qwf m dat a(1) = NT(8191* (COS(| * 360/ Num poi nt s)) +8192)
80 NEXT |

90 PRI NT "Data Cener at ed"

100 Nbyt es=2* Num_poi nt s

110 ASSI GN @sg TO 719

120 I ASSI GN @sgb TO 719; FORVAT MSB FI RST

130 Nbyt es$=VAL$(Nbyt es)

140 Ndi gi t s=LEN(Nbyt es$)

150 Ndi gi t s$=VAL$(Ndi gi t s)

160 QUTPUT @sg USI NG "#, K';": MVEM DATA ""ARBI : fil e_nane_1"",6 #"

Chapter 4 261

Creating and Downloading Waveform Files
Programming Examples

170
180
190
200
210
220
230
240
250
260
270
280
290
300

OUTPUT @sg USI NG "#, K"; Ndi gi t s$
OQUTPUT @sg USI NG "#, K'; Nbyt es$
QUTPUT @Esgb; | wf m dat a(*)

OUTPUT @sg; END

OQUTPUT @sg USI NG "#, K';": MVEM DATA ""ARBQ fil e_nane_1"", #"
OUTPUT @Esg USI NG "#, K'; Ndi gi t s$
QUTPUT @sg USI NG "#, K'; Nbyt es$
OQUTPUT @sgb; QM m dat a(*)

OQUTPUT @Esg; END

ASSI GN @sg TO *

ASSI GN @sgb TO *

PRI NT

PRI NT "*END*"

END

Program Comments

10: Program file name.

20 Sets the number of pointsin the waveform.

30: Defines arrays for | and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates | waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: Thel and Q waveform files have the same name

90 to 300: See the table on page 256 for program comments.

262

Chapter 4

Creating and Downloading Waveform Files
Programming Examples

Downloading E443xB Waveform Data Using HP Basic for UNIX

On the documentation CD, this programming example's name is “ hpbasicUx2.txt.”

The following program shows you how to download waveforms using HP BASIC for UNIX. It issimilar to
the previous program example. The difference is the way the formatting for the most significant bit (M SB)
on linesis handled.

First, the | waveform datais put into an array of integerscalled | wf m dat a and the Q waveform datais put
into an array of integers called Quf m dat a. The variable Nbyt es is set to equal the number of bytesin the
| waveform data. This should be twice the number of integersin | wf m dat a, since an integer is represented
2 bytes. Input integers must be between 0 and 16383.

Inthe Qut put commands, USI NG “ #, K’ formatsthe data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The“K” instructs HP BASIC to output the following numbers or strings in the default format.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210

! RE-SAVE "ARB 1 Q file"
Num_poi nt s=200
ALLOCATE | NTEGER | wf m dat a(1: Num_poi nts), QM m dat a(1: Num _poi nt s)
DEG
FOR I =1 TO Num poi nts
I wf m dat a(1) =1 NT(8191* (Sl N(| *360/ Num poi nt s)) +8192)
Qv m dat a(1) =1 NT(8191*(COS(|*360/ Num_poi nts))+8192)
NEXT |
PRI NT "Data Cener at ed"
Nbyt es=2* Num_poi nt s
ASSI GN @sg TO 719; FORVAT ON
ASSI GN @sgb TO 719; FORMAT OFF
Nbyt es$=VAL$(Nbyt es)
Ndi gi t s=LEN(Nbyt es$)
Ndi gi t s$=VAL$(Ndi gi t s)
QUTPUT @sg USI NG "#, K';": MVEM DATA ""ARBI : file_nane_1"",6 #"
OUTPUT @sg USI NG "#, K'; Ndi gi t s$
OQUTPUT @sg USI NG "#, K'; Nbyt es$
QUTPUT @Esgb; | wf m dat a(*)
OQUTPUT @Esg; END
OQUTPUT @sg USI NG "#, K';": MVEM DATA ""ARBQ fil e_nane_1"", #"

Chapter 4 263

Creating and Downloading Waveform Files
Programming Examples

220
230
240
250
260
270
280
290

300

OUTPUT @sg USI NG "#, K"; Ndi gi t s$
OQUTPUT @sg USI NG "#, K'; Nbyt es$
QUTPUT @Esgb; Qwf m dat a(*)

OUTPUT @sg; END

ASSI GN @sg TO *

ASSI GN @sgb TO *

PRI NT

PRI NT "*END*"

END

Program Comments

10: Program file name.
20 Sets the number of pointsin the waveform.
30: Defines arrays for | and Q waveform points. Sets them to be integer arrays.
40: Sets HP BASIC to use degrees for cosine and sine functions.
50: Sets up loop to calculate waveform points.
60: Calculates | waveform points.
70: Calculates Q waveform points.
80: End of loop.
160 and 210: The |l and Q waveform files have the same name
90 to 300 See the table on page 259 for program comments.
264 Chapter 4

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

Troubleshooting Waveform Files

Symptom

Possible Cause

ERROR 224, Text file busy

Attempting to download a waveform that has the same name as the
waveform currently being played by the signa generator.

To solve the problem, either change the name of the waveform being
downloaded or turn off the ARB.

ERROR 628, DAC over range

The amplitude of the signal exceeds the DAC input range. Thetypical causes
are unforeseen overshoot (DA C values within range) or the input values
exceed the DAC range.

To solve the problem, scale or reduce the DAC input values. For more
information, see“DAC Input Values’ on page 173.

ERROR 629, File format invalid

The signal generator requires aminimum of 60 samplesto build awaveform
and the same number of | and Q data points.

ERROR -321, Out of memory

Thereis not enough space in the ARB memory for the waveform file being
downloaded.

To solve the problem, either reduce the file size of the waveform file or
delete unnecessary files from ARB memory.

No RF Output

The marker RF blanking function may be active. To check for and turn RF
blanking off, press Mode > Dual ARB > ARB Setup > Marker Utilities >

Marker Routing > Pulse/RF Blank > None. This problem occurs when the file
header contains unspecified settings and a previously played waveform used
the marker RF blanking function.

For more information on the marker functions, see the User’s Guide.

Undesired output signal

Check for the following:

* Thedatawas downloaded in little endian order. See“Little Endian and
Big Endian (Byte Order)” on page 171 for more information.

* Thewaveform contains an odd number of samples. An odd number of
samples can cause waveform discontinuity. See “Waveform Phase
Continuity” on page 181 for more information.

Chapter 4

265

Creating and Downloading Waveform Files
Troubleshooting Waveform Files

266 Chapter 4

5 Creating and Downloading User-Data Files

This chapter explains the requirements and process of downloading user-data and contains the following

sections:

“User Bit/Binary File Data Downloads’ on page 268

“FIR Filter Coefficient Downloads” on page 279

“Downloads Directly into Pattern RAM (PRAM)” on page 283

“Save and Recall Instrument State Files” on page 289

“Download User Flatness Corrections Using C++ and VISA” on page 302
“Data Transfer Troubleshooting” on page 307

267

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

User Bit/Binary File Data Downloads

NOTE Thisfeature isavailable only in E4438C ESG Vector Signal Generators with Option
001/601 or 002/602.

The signal generator accepts user file data downloads. The files can bein either binary or bit format, each
consisting of 8-bit bytes. Both file types are stored in the signal generator’s non-volatile memory.

* Inbinary format the dataisin multiples of 8 bits; all 8 bits of a byte are taken as data and used.
* Inbit format the number of bitsin the file is known and the non-data bits in the last byte are discarded.

After downloading the files, they can be selected as the transmitting data source. This section contains
information on transferring user file datafrom a PC to the signal generator. It explains how to download user
filesinto the signal generator’s memory and modul ate the carrier signal with those files.

Framed and Unframed Data Types
There are two modes that can be used: framed mode and pattern mode (unframed).

* Inframed mode, user file dataisinserted into the data fields of an existing or user-defined, custom
framed digital modulation format, such as DECT, PHS, or TETRA.

The signal generator’s firmware generates the required framing structure and inserts user file datainto
the data field(s) of the selected format. For more information, see“ User Files as Data Source for Framed
Transmission” on page 270.

NOTE Unlike pattern RAM (PRAM) downloads to memory, user files contain “data field”
information only. The control data bits required for files downloaded directly into PRAM
are not required for user file data.

» |In pattern mode, thefile is modul ated as a continuous, unframed stream of data, according to the
modulation type, symbol rate, and filtering associated with the selected format.

When a user file is selected as the data source, the signal generator’s firmware loads each data bit into
waveform memory, and sets 31 additional control bits depending upon the operating mode, regardless of
whether framed or unframed transmission is selected. In this manner, user files are mapped into
waveform memory bit-by-bit; where each bit is represented by a 32-bit word.

If the bit rate exceeds 50 Mbps, the user data is written to memory one symbol per 32-bit word, rather
than one bit per 32-bit word. Thisis generally referred to as parallel mode.

268 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

Bit Memory and Binary Memory

User files can be downloaded to bit memory or binary memory. Bit memory accepts data in integer number
of bits, up to the maximum available memory. The datalength in bytesfor files downl oaded into bit memory
isegual to the number of significant bits plus 7, divided by 8, then rounded down to the nearest integer plus
8 bytes for the file header. You must have enough bytes to contain the bits you specify. If the number of bits
isnot amultiple of 8, the least significant bits of the last byte will beignored.

Bit memory provides more versatility and is the preferred memory for user file downloads.

Binary memory requires data formatted in 8-bit bytes. Files stored or downloaded to binary memory are
converted to bit files prior to editing in the bit file editor. Afterward, these modified files from binary
memory are stored in bit memory as bit files.

Data Requirements

1. Datamust bein binary format.
SCPI specifies the datain 8-bit bytes.
2. Bit length must be amultiple of the data-field length of the active format.

Also, the bit length of a user file must be a multiple of the data-field length of the active format in order
to completely fill the frame's data field without leaving a remainder.

Remaining datais truncated by the signal generator’s firmware and is therefore not present in the
resulting waveform at the RF output.

3. Bit length must be a multiple of 8 (binary downloads only).

SCPI specifies datain 8-bit bytes, and the binary memory stores data in 8-bit bytes.
If the length (in bits) of the original data pattern is not a multiple of 8, you may need to:

e add additional bitsto complete the ASCII character,

« replicate the data pattern without discontinuity until the total length is a multiple of 8 bits,
« truncate and discard bits until you reach a string length that is a multiple of 8, or

e useabit file and download to bit memory instead.

Chapter 5 269

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

Data Limitations

Maximum selectable file sizes are directly proportional to the available memory space and the signal
generator’s pattern RAM (volatile memory) size. To determine the maximum user file size, you must
consider the following:

» framing overhead

» pattern RAM storage size (Option 001/601 = 800 kB, Option 002 = 3.2 MB, or Option 602 = 6.4 MB)
The maximum memory for bit and binary user datais less than the maximum memory for PRAM data.

» available memory

You may have to delete files from memory before downloading larger files. For more information on signal
generator memory, see “Waveform Memory” on page 184.

NOTE References to pattern RAM (PRAM) are for descriptive purposes only, relating to the
manner in which the memory is being used. PRAM and volatile waveform memory
(WFM1) actually utilize the same storage media.

Data Volatility

The signal generator provides two data storage areas: volatile waveform memory (WFM 1) and non-volatile
memory (NVWFM). Data stored in volatile waveform memory cannot be recovered if it is overwritten or if
the power is cycled. Data stored in non-volatile memory, however, remains until you delete thefile. The
Option 005 signal generator’s hard disk provides 5 GB of non-volatile storage. Signal generators without
Option 005 provide 15 MB of non-volatile storage.

User Files as Data Source for Framed Transmission

Specifying a user file as the data source for a framed transmission provides you with an easy method to
multiplex real datainto internally generated TDMA framing. The user file will fill the data fields of the
active timeslot in the first frame, and continue to fill the same timeslot of successive frames aslong asthere
ismore datain the file. This functionality allows a communications system designer to download and
modulate proprietary data sequences, specific PN sequences, or simulate multiframe transmission, such as
those specified by some mobile communications protocols. As the examplein the following figure shows, a
GSM multiframe transmission requires 26 frames for speech.

270 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

Figure 5-1 GSM Multiframe Transmission

SuperFrame = 51 MultiFrames = [m:[| l m ‘ ‘ ‘ ‘ H_H_mmm]
1,657,500 bits = 6.12 s

Speech MultiFrame (TCH) =
26 Frames = 32,500 bits = 120 ms

Frame = 8 Timeslots =
1250 bits = 4.615 ms

Tsa | TS5 |T86 TSTJ

Normal GSM Timeslot = ‘ 3 57 1 26 1 57 3| 8.25
156.25 bits = 576.92 us

Tail Data Control Control Data Tail Guard
Bits Field #1 Bit Bit Field #2 Bits Period

Midamble

When a user file is selected as the data source for a framed transmission, the signal generator’s firmware
loads PRAM with the framing protocol of the active TDMA format. For all addresses corresponding to
active (on) timeslots, burst bits are set to 1 and data bits are set with the contents of the user file for the data
fields of the timedlot. Other bits are set according to the configuration selected. For inactive (off) timeslots,
burst control bits are set to 0, and data is “ unspecified.” Pattern reset is set to 1 for the last byte in PRAM,
causing the pattern to repeat after the last byte isread.

NOTE The datain PRAM is static. Firmware writesto PRAM once for the configuration selected
and the hardware reads this data repeatedly. Firmware overwrites the volatile PRAM
memory to reflect the desired configuration only when the data source or mode (digital
communications format) is changed.

Take for example, transmitting a 228-bit user file for timeslot #1 (TS1) in anormal GSM transmission. Per
the standard, a GSM normal channel is 156.25-bits long, with two 57-bit data fields (114 bits total per
timeslot), and 42 bits for control or signalling purposes.

NOTE Compliant with the GSM standard, which specifies 156.25-bit timeslots, the signal
generator uses 156-bit timeslots and adds an extra guard bit every fourth timeslot.

Chapter 5 271

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

The 7 remaining timeslots in the GSM frame are off. The user file will completely fill timeslot #1 in two
consecutive frames, and will then repeat. See Figure 5-2.

Figure 5-2 Mapping User File Data to a Single Timeslot

228 bit User File | 114bits | 114bits |

Amplitude

TSO TS1 TS2 TS3 TS4 TS5 TS6 TS7 (TSO TS1 TS2 TS3 TS4 TS5 TS6 TS7
Frame 1 Frame 2

TS0 TS1 TS2
Frame 1 ,
Time

—>

For this protocol configuration, the signal generator’s firmware |oads PRAM with the bits defined in the
following table.

Frame Timeslot PRAM Word Data Bits Burst Bits | Pattern Reset
Offset Bit
1 0 0-155 0/1 (don’t care) 0 (off) 0 (off)
1 1 (on) 156 - 311 set by GSM standard (42 bits) & 1 (on) 0
first 114 bits of user file
1 2 312 - 467 0/1 (don't care) 0 0
1 3 468 - 624 0/1 (don’t care) 0 0
1 4 625 - 780 0/1 (don’t care) 0 0
1 5 781 - 936 0/1 (don’t care) 0 0
1 6 937 - 1092 0/1 (don’t care) 0 0
1 7 1093 - 1249 0/1 (don’t care) 0 0
2 0 1250 - 1405 0/1 (don’t care) 0 0
2 1 (on) 1406 - 1561 set by GSM standard (42 bits) & 1 (on) 0
remaining bits of user file
2 2through6 | 1562 - 2342 0/1 (don’t care) 0 0 (off)
2 7 2343 - 2499 0/1 (don’t care) 0 O (linoffset
2499 only)
272 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

Event 1 output is set to 0 or 1 depending on the sync out selection, which enables the Event 1 output at either
the beginning of the frame, beginning of a specific timeslot, or at al timeslots.

Because timeslots are configured and enabled within the signal generator, a user file can be individually
assigned to one or more timeslots. A timeslot cannot have more than one data source (PN sequence or user
file) specified for it. The amount of user file data that can be mapped into hardware memory depends on
both the amount of PRAM available on the baseband generator, and the number and size of each frame. The
amount of PRAM required for aframed transmission is calculated as follows:

PRAM storage required (measured in 32-bit words) =
size of normal GSM timeslot x timeslots per frame x speech multiframe(TCH) x superframe

size of normal GSM timeslot = 156.25 bits
timeslots per frame = 8 timedlots.

speech multiframe(TCH) = 26 frames
superframe = 51 speech multiframes

For example, to calculate the number of bytes to generate a superframe for GSM:
=156.25x 8 x 26 x 51
=1,657,5000 32-bit words = 6,630,000 bytes.

Multiple User Files Selected as Data Sources for Different Timeslots

If two or more user files are selected for aframed transmission, the amount of PRAM required is determined
by the user file that generates the largest number of frames. In order to generate continuously repeating data
patterns, each user file must be long enough to completely fill an integer number of timeslots. In addition, all
user files must meet the “multiple of 8 bits” and “enough PRAM memory” requirements to be correctly
modul ated.

For example, user file #1 contains 114 bits and fills the data fields of anormal GSM timeslot, and user
file #2 contains 148 bits for a custom GSM timeslot. In order to correctly transmit these data patterns as
continuously repeating user files without discontinuities, both data patterns must be repeated four times.
Therefore, user file #1 contains 456 bits, and user file 2 contains 592 hits. Each user file will then creste
exactly four framesin pattern RAM.

When two or more user files generate different numbers of complete frames, the user files will repeat on
different cycles. All user fileswill restart when the user file that generates the largest number of frames
repeats. For example, user file #1 needs four frames to completely transmit its data, and user file #2 needs
only three. User file #2 will repeat after the third frame, and again when user file #1 repeats. See Figure 5-3.
If these were integer multiples of each other, both user files would be continuous, and user file #2 would
repeat after two frames.

Chapter 5 273

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

Figure 5-3 Repeating Different Length User Files

User File #1 User File #1

//_' Re-starts Re-stars

Frame #1 | Frame #2 | Frame #3| Frame #4|Frame #1 | Frame #2 | Frame #3| Frame #4| Frame #1

Frame #1 | Frame #2 | Frame #3 | Frame #1 |Frame #1 | Frame #2 | Frame #3 | Frame #1 | Frame #1

User File #2 User File #2
Re-slarls Re-starls
User File #2 User File #2
Re-starts Re-starts

Downloading User File Data

This section includes information that explains how to download user file data. It includes data requirements
and limitations, preliminary setup, SCPlI commands and sample command lines for both downloads to bit
memory and binary memory.

Data Requirements and Limitations Summary

1. Datamust be binary.

2. Bit length must be a multiple of the data-field length of the active TDMA format.
3. User filesizeislimited by the available memory.
4

. When designing user files, you must consider the signal generator’s PRAM storage size
(Option 001/601 = 800 kB, Option 002 = 3.2 MB, or Option 602 = 6.4 MB), framing overhead, and
available memory.

The maximum memory for bit and binary user datais less than the maximum memory for PRAM data.

5. For downloads to binary memory, bit length must be a multiple of 8; SCPI specifies the datain 8-hit
bytes.

No preliminary setup isrequired for user file downloads.

Bit Memory Downloads

Bit memory accepts datain any integer number of bits, up to the maximum available memory. The data
length in bytes for files downloaded to bit memory is equal to the number of significant bits plus 7, divided
by 8, then rounded down to the nearest integer plus 8 bytesfor the file header. Each file has a 16-byte header
associated with it.

274 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

You must have enough bytes to contain the bits you specify. If the number of bitsis not amultiple of 8, the
least significant bits of the last byte will be ignored.

For example, specifying 14 bits of a 16-bit string using the command
: MEMory: DATA'BIT "<fil e_name>", 14, #12Qx resultsin the last 2 bits being ignored. See the
following figure.

1010 0001 0111 1010 original user-defined data contains 2 bytes, 16 bits total
SCPI command sets bit count to 14; the last 2 bits areignored
1010 0001 0111 1040)

Bit memory provides more versatility and is preferred for user file downloads.

SCPI Commands
Send the following command to download the user file datainto the signal generator’s bit memory catal og.
:MEMory: DATA'BIT "<fil e_name>", <bit count>, <data bl ock>

Example
:MEMOry: DATA BIT "<fil e_name>", 16, #12Q

file_nane provides the user file name asit will appear inthe signal generator’s bit memory catalog
16 states the number of bits to download
indicates the start of the data block

states the number of decimal digits that follows this number that defines the number of
data bytesin the data block

2 denotes the number of data bytesin the data block, which follows

Q the ASCI| representation of the 16 bits of data (data block) to be downloaded to the
signal generator

Querying the Waveform Data

Use the following SCPI command to query user file data from the bit memory catalog:

: MEMory: DATA BI T? "<fil e_name>"

The output format is the same as the input format.

Chapter 5 275

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

Binary Memory Downloads

Binary memory requires data formatted in 8-hit bytes. Files stored or downloaded to binary memory are
converted to bit files prior to editing in the Bit File Editor. Afterward, these modified files from binary
memory are stored in bit memory as bit files. Bit memory isthe preferred for user file downloads.

SCPI Commands

: MVEM DATA "<fil e_nane>", <data bl ock>

Send this command to download the user file datainto the signal generator’s binary memory. The variable
<fi | e_nane> denotes the name that will be associated with the downloaded user file stored in the signa
generator.

Sample Command Line

: MVEM DATA "<fil e_name>", #ABC

<file_name> thename of the user file stored in the signal generator’s memory

indicates the start of the data block

A the number of decimal digitsto follow in B

B adecimal number specifying the number of data bytesin C
C the binary user-file data

Example
: MVEM DATA "<fil e_name>", #215182S?4g@7p! 897

<fil e_name> provides the user file name as it will appear in the signal generator’s binary
memory catalog

indicates the start of the data block
defines the number of decimal digitsto follow in “B”

15 denotes how many bytes of data are to follow

1&2S?4g9@7p! 897 the ASCII representation of the binary datathat is downloaded to the signal
generator, however not all ASCII values are printable

Querying the Waveform Data

Use the following SCPI command line to query user file data from binary memory:

: MVEM DATA? "fil e_nane"

The output format is the same as the input format.

276 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

Selecting Downloaded User Files as the Transmitted Data

Unframed Data

The following front panel key presses or remote commands will select the desired user file from the catalog
of user files as a continuous stream of unframed data for the active TDMA format or for a custom
modulation.

Viathe front panel:

1. For aTDMA format, press Mode > Real Time TDMA > desired format > Data > User File.
For custom modulation, press Mode > Custom > Real Time 1/Q Baseband > Data > User File.
2. Highlight the desired file in the catalog of user files.

3. PressSelect File > desired format Off On or Custom Off On to On.

Viathe remote interface:

The following commands activate the desired TDMA format:

[: SOURce] : RADI o0: <desired format>: DATA "Bl T: <fil e_nanme>"
[: SOURce] : RADI 0: <desired fornat>[: STATe] On

The following commands activate the custom modulation format:

[: SOQURce] : RAD o: CUSTom DATA "BI T: <fi |l e_name>"

[: SQURce] : RAD 0: CUSTon] : STATe] On

NOTE To select a user file from binary memory, send the same commands shown in the above
examples without Bl T: preceding the file name. For example;

[: SOURce] : RAD o: <desi red fornat>: DATA "<fil e_nane>"

Framed Data

The following front panel key presses or remote commands will select the desired user file from the catalog
of user files as a continuous stream of framed data for the active TDMA format.

Chapter 5 277

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads

Viathe front panel:

1.

Press Mode > Real Time TDMA > desired format > Data Format Pattern Framed > Configure Timeslots >

Configure (current active timeslot) > Data > User File.

Highlight the desired file in the catalog of user files.

3. PressSelect File

To activate the TDMA format, press Mode > Real Time TDMA > desired format > toggle the format on.

Viathe remote interface:

The following SCPI commands select and activate the user file as framed data for an NADC uplink
traffic channel in timeslot 1. The same command syntax is used for other data transmission formats.

[: SQURce] : RAD o: NADC. DATA "BIT: <fi |l e_nanme>"

[: SOURce] : RAD o: NAD] : STATe] On
The following commands load the data and activate the NADC modulation format:
[: SOURce] : RAD 0: NADC. SLOT1: UTCHannel : DATA "BI T: <fi | e_nanme>"

[: SOURce] : RAD 0: NAD(: STATe] On

Modulating and Activating the Carrier

The following settings can be performed from the front panel or by using remote commands to modulate the
carrier and turn on the RF output.

Viathe front panel:

1. Setthecarrier frequency to 2.5 GHz.

2. Set the carrier amplitude to —10.0 dBm.
3.

4. Activate the RF output.

Modulate the carrier.

Viathe remote interface:

[: SQURce] : FREQuency: FI Xed 2.5G#Z

[SQURce] : POMér[: LEVel 1[: | Mvedi at e] [: AMPLI t ude]

: QUTPut : MCDul ati on[: STATe] ON
:QUTPuUt [: STATe] ON

-10. ODBM

278

Chapter 5

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads

FIR Filter Coefficient Downloads

NOTE Thisfeature is available only in E4438C ESG Vector Signal Generators with Option
001/601 or 002/602.

The signal generator accepts finite impul se response (FIR) filter coefficient downloads. After downloading
the coefficients, these user-defined FIR filter coefficient values can be selected as the filtering mechanism
for the active digital communications standard.

Data Requirements
There are two requirements for user-defined FIR filter coefficient files:

1. Datamust bein ASCII format.
The signal generator processes FIR filter coefficients as floating point numbers.

2. Datamust bein List format.
FIR filter coefficient dataiis processed as alist by the signal generator’s firmware. See “ Sample
Command Line” on page 285.

Data Limitations

Filter lengths of up to 1024 taps (coefficients) are allowed. The oversample ratio (OSR) is the number of
filter taps per symbol. Oversample ratios from 1 through 32 are possible.

The maximum combination of OSR and symbols allowed is 32 symbols with an OSR of 32.

The Real Time I/Q Baseband FIR filter files are limited to 1024 taps, 64 symbols and a 16-times oversample
ratio. FIR filter files with more than 64 symbols cannot be used.

The ARB Waveform Generator FIR filter files are limited to 512 taps and 512 symboals.

The sampling period (At) is equal to the inverse of the sampling rate (FS). The sampling rateis equal to the
symbol rate multiplied by the oversampleratio. For example, the GSM symbol rate is 270.83 ksps. With an
oversampleratio of 4, the sampling rate is 1083.32 kHz and At (inverse of FS) is 923.088 nsec.

Chapter 5 279

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads

Downloading FIR Filter Coefficient Data

The ESG storesthe FIR filesin the FIR (/USER/FIR) directory, which utilizes non-volatile memory. Use the
following SCPI command line to download FIR filter coefficients from the PC to the signal generator’'s FIR
memory:

: MEMory: DATA FIR "<fil e_name>", osr, coefficient{, coefficient}

Use the following SCPI command line to query list data from FIR memory:

: MEMory: DATA FIR? "<fil e_name>"

Sample Command Line

The following SCPI command will download atypical set of FIR filter coefficient values and name the file
“FIR1":

:MEMOry: DATA FIR "FIR1", 4,0, 0, 0, 0, 0, 0. 000001, 0. 000012, 0. 000132, 0. 001101,

0. 006743, 0. 030588, 0. 103676, 0. 265790, 0. 523849, 0. 809508, 1, 1, 0. 809508, 0. 523849,
0. 265790, 0. 103676, 0. 030588, 0. 006743, 0. 001101, 0. 000132, 0. 000012, 0. 000001, 0,
0,0,0,0

FI R1 assigns the name FIR1 to the associated OSR (over sampleratio) and coefficient values
(the file isthen represented with this name in the FIR File catalog)

specifies the oversampleratio.

0,0,0,

4
01 ’
0. 000001, ... represent FIR filter coefficients.

0
.0
Selecting a Downloaded User FIR Filter as the Active Filter

FIR Filter Data for TDMA Format

Thefollowing front panel key presses or remote commands will select user FIR filter data asthe active filter
for aTDMA modulation format.

Viathe front panel:

1. Press Mode > Real Time TDMA > desired format > Modify Standard > Filter > Select > User FIR

2. Highlight the desired file in the catalog of FIR files.

3. PressSelect File.

To activate the TDMA format press Mode > Real Time TDMA > desired format and toggle the format on.

280 Chapter 5

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads

Viathe remote interface:
[SOURce] : RAD 0: <desired fornat>: FI LTer "<fil e_nane>"

This command selects the user FIR filter, specified by the file name, asthe active filter for the TDMA
modulation format. After selecting the file, activate the TDMA format with the following command:

[SOURce] : RAD 0: <desired fornat>[: STATe] On

FIR Filter Data for Custom Modulation

Thefollowing front panel key presses or remote commands will select user FIR filter data asthe active filter
for a custom modulation format.

Viathe front panel:

1. Press Mode > Custom > Real Time |1Q Baseband > Filter > Select > User FIR
2. Highlight the desired file in the catalog of FIR files.
3. PressSelect File.

To activate the custom modul ation, press Mode > Custom > Real Time 1Q Baseband >
Custom Off On and toggle to on.

Viathe remote interface:
[SOURce] : RAD o: CUSTom FI LTer "<file_name>"

This command selects the user FIR filter, specified by the file name, as the active filter for the custom
modulation format. After selecting the file, activate the TDMA format with the following command:

[: SOURce] : RAD o: CUSTon] : STATe] On

FIR Filter Data for COMA and W-CDMA Modulation

Thefollowing front panel key presses or remote commands will select user FIR filter data asthe active filter
for aCDMA modulation format. The processis very similar for W-CDMA.

Viathe front panel:

1. Press Mode > CDMA > Arb 1S-95A > CDMA Define > Filter > Select > User FIR
2. Highlight the desired file in the catalog of FIR files.

3. PressSelect File.

To activate the CDMA modulation, press Mode > CDMA > Arb 1S-95A > CDMA Off On to On.

Chapter 5 281

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads

Viathe remote interface:
[SOURce] : RAD 0: <desired fornat>: ARB: Fl LTer "<fil e_name>"

This command selects the User FIR filter, specified by the file name, as the active filter for the CDMA or
W-CDMA modulation format. After selecting thefile, activate the CDMA or W-CDMA format with the
following command:

[SOURce] : RADI o: <desired fornat>: ARB[: STATe] On

Modulating and Activating the Carrier

The following front panel key presses or remote commands will set the carrier frequency, power, turn on the
modulation, and turn on the RF output.

Viathe front panel:

1
2.
3.
4,

Press Frequency > 2.5 > GHz. Sets the signal generator frequency to 2.5 Ghz.
Press Amplitude > -10 > dBm. Setsthe signal generator power to —10 dBm.
Press Mod On/0ff until the display annunciator reads MOD ON.

Press RF On/0ff until the display annunciator reads RF ON.

Viathe remote interface:

Send the following SCPI commands to modulate and activate the carrier.

1

Set the carrier frequency to 2.5 Ghz:

[: SQURce] : FREQuency: FI Xed 2. 5GH#Z

Set the carrier power to —10.0 dBm:

[: SOURce] : PONér[: LEVel][: | Mvedi at e] [: AVPLI tude] -10. ODBM
Activate the modulation:

: QUTPut : MCDul ati on[: STATe] ON

Activate the RF output:

: QUTPuUt [: STATe] ON

282

Chapter 5

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

Downloads Directly into Pattern RAM (PRAM)

NOTE Thisfeature is available only in E4438C ESG Vector Signal Generators with Option
001/601 or 002/602.

Typicaly, the signal generator’s firmware generates the required data and framing structure and loads this
datainto pattern RAM (PRAM). The datais read by the baseband generator, which in turnisinput to the 1/Q
modul ator. The signal generator can also accept data downloads directly into PRAM from a computer.
Programs such as MATLAB or MathCad can generate datawhich can be downloaded directly into PRAM in
either alist format or a block format.

Direct downloads to PRAM provides complete control over bursting, which is especially helpful for
designing experimental or proprietary framing schemes.

This section containsinformation that will help you transfer user-generated data from a system controller to
the signal generator’s PRAM. It explains how to download data directly into PRAM and modulate the
carrier signa with the data.

The signal generator’s baseband generator assembly builds modulation schemes by reading data stored in
PRAM and constructing framing protocols according to the data patterns present. PRAM data can be

mani pulated (types of protocols changed, standard protocols modified or customized, etc.) by the front panel
interface or by remote-command interface.

Data Limitations

Total (data bits plus control bits) download size limitations to PRAM (volatile memory) are 8 MB with
Option 001/601, 32 MB with Option 002, and 64 MB with Option 602. However the signal generator shares
this memory with other file types, so the actual available memory varies depending on the files currently
residing in volatile memory. Each downloaded byte for PRAM uses 4 bytes of storage.

NOTE References to pattern RAM (PRAM) are for descriptive purposes only, relating to the
manner in which the memory is being used. PRAM and volatile waveform memory
(WFM1) actually utilize the same storage media.

A data PRAM file containing 8 megabits of modulation data must contain another 56 megabits of control
information. A file of this size requires 8 MB of memory.

The signal generator provides two data storage areas: volatile waveform memory (WFM 1) and non-volatile
memory (NVWFM). Data stored in volatile waveform memory cannot be recovered if it is overwritten or if
the power is cycled. Data stored in non-volatile memory, however, remains until you delete the file. The

Chapter 5 283

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

Option 005 signal generator’s hard disk provides 5 GB of non-volatile storage. Signal generators without
Option 005 provide 15 MB of non-volatile storage. For more information on signal generator memory, see
“Waveform Memory” on page 184.

Downloading in List Format

Because of parsing, list data format downloads are significantly slower than block format downloads.

Data Requirements and Limitations Summary

1. Datamust be 8-bit unsigned integers, from 0 to 255.
This requirement is necessary as list format downloads are parsed prior to being loaded into PRAM.
2. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

The signal generator processes datain 8-bit bytes. Each byte contains 1 bit of data field information, and
7 bits of control information associated with the data field bit.

Table 5-1 PRAM Data Byte
Bit | Function Value | Comments
0 Data o1 This bit is the data to be modulated. This bit is“unspecified” when burst (bit 2) is
setto 0.
1 Reserved 0 Always 0
2 Burst 0/1 | Settol=RFon
Set to 0 = RF off
For non-bursted, non-TDMA systems, this bit is set to 1 for all memory locations,
leaving the RF output on continuously. For framed data, this bit is set to 1 for on
timeslots and O for off timeslots.
3 Reserved 0 Always0
4 Reserved 1 Always 1
5 Reserved 0 Always 0
6 Event 1 0/1 | Setting thishit to 1 causes alevel transition at the EVENT 1 BNC connector. This
Output can be used for many functions. For example, as a marker output to trigger external
hardware when the data pattern has restarted, or to create a data-synchronous pulse
train by toggling this bit in alternate addresses.
7 Pattern 0/1 | Setto 0= continueto next sequential memory address.
Reset Set to 1 = end of memory and restart memory playback.
Thishitisset to 0 for all bytes except the last address of PRAM. For the last address
(byte) of PRAM, it is set to 1 to restart the pattern.

284 Chapter 5

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

Preliminary Setup

It isimportant to set up the digital communications format before downloading data. This allows the signal
generator to define the modulation format, filter, and data clock.

CAUTION Activating the digital communications format after the data has been downloaded to PRAM
may corrupt the downl oaded data.

Viathe front panel:

To set up the TDMA format, press Mode > desired format and toggle the format on.
To adjust symbol rate, filtering, or other parameters, press the appropriate softkey and adjust the value.
To set up the custom modulation format, press Mode > Custom and toggle the format on.

Viathe remote interface:

For TDMA formats, send the following SCPI commands:

[: SOURce] : RADI o: <desired format>[: STATe] ON
[: SOURce] : RADI 0: <desi red fornmat>: BURSt[: STATe] ON
[: SOURce] : BURSt : SOURce | NT

For custom modulation, send:
[: SOURce] : RAD 0: QUSTOn] : STATe] ON
To adjust symbol rate, filtering, or other parameters, send the appropriate SCPI command.

SCPI Command to Download Data in List Format
: MEMDry: DATA: PRAM FI LE: LI ST "<fil e_name>", <ui nt 8>[, <ui nt 8>, <. .. >]

This command downloads the list-formatted data directly into PRAM. The variable <ui nt 8> isany of the
valid 8-bit unsigned integer values between 0 and 255, as specified by Table 5-1 on page 284. Note that each
value corresponds to a unique byte/addressin PRAM.

Sample Command Line

For example, to burst a FIX4 data pattern of “1100” five times, then turn the burst off for 32 data periods
(assuming a 1-bit/symbol modulation format), the command is:

: MEMory: DATA: PRAM FI LE: LI ST "<newFi | e>", 85, 21, 21, 20, 20, 21, 21, 20, 20, 21, 21,
20, 20, 21, 21, 20, 20, 21, 21, 20, 20, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 144

newki | e name of the PRAM file asit will appear in waveform memory

Chapter 5 285

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

85 enables event 1 trigger signifying the beginning of the data pattern
21 signifiesdata= 1, burst = on (1)

20 signifiesdata= 0, burst = on (1)

16 signifies data = unspecified, burst = off (0)

144 signifies data = unspecified, burst = off (0), pattern repeat = on (1)

Downloading in Block Format

NOTE Because thereis no parsing involved, block data format downloads are significantly faster
than list format downloads.

Data Requirements and Limitations Summary

1. Datamust bein binary form.
This requirement is necessary as the baseband generator reads binary data from the data generator.
2. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

The signal generator processes datain 8-bit bytes. Each byte contains 1-bit of datafield information, and
7-bits of control information associated with the data field bit. See Table 5-1 on page 284 for the
required data and control bits.

Because a waveform containing 16 megabits of data for subsequent modulation must also contain another
112 megabits of control information, afile this size (16 MB) requires a signal generator with Option 002
(32 MB) or 602 (64 MB). The largest amount of data (modulation data and control data) for awaveform in
an Option 001/601 signal generator is approximately 8 megabits, which provides only enough memory for
56 megabits of control data (64 megabits= 8 MB of memory).

Preliminary Setup

It isimportant to set up the digital communications format before downloading data. This allows the signal
generator to define the modulation format, filter, and data clock.

CAUTION Activating the digital communications format after the data has been downloaded to PRAM
may corrupt the downloaded data.

286 Chapter 5

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

Viathe front panel:

To set up the TDMA format, press Mode > desired format and toggle the format on.

To set up a custom modulation format, press Mode > Custom and toggle the format on.

To adjust symbol rate, filtering, or other parameters, press the appropriate softkey and adjust the value.
Viathe remote interface:

For TDMA formats, send the following SCPI command:

[: SOURce] : RADI o0: <desired format>[: STATe] ON

For custom modulation, send:

[: SOURce] : RAD o: CUSTon{ : STATe] ON

To adjust symbol rate, filtering, or other parameters, send the appropriate SCPI command.

SCPI Command to Download Data in Block Format

: MEMory: DATA: PRAM FI LE: BLOCk " <fi | ename>", <dat abl ock>

This command downloads the block-formatted data directly into pattern RAM. In the following sample
command line, the datablock is designated as #ABC.

Sample Command Line
: MEMory: DATA: PRAM FI LE: BLOCk "<fi | e_name>", #ABC

<file_name> name of the PRAM fileasit will appear in waveform memory

indicates the start of the data block

A the number of decimal digitsto follow in B

B adecimal number specifying the number of data bytesin C
C the binary user file data

Example 1

: MEMDry: DATA: PRAM FI LE: BLOCK " <new Fi | e>", #2161@S@4u&07! 89* 7

<new_Fi | e> name of the PRAM file asit will appear in waveform memory
indicates the start of the data block

2 defines the number of decimal digitsto follow in “B”.

16 denotes how many bytes of data are to follow.

Chapter 5 287

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)

1@S@4u&07! 89*7 the ASCII representation of the binary data that is downloaded to the signal

generator, however not all ASCII values are printable

Modulating and Activating the Carrier

The following section explains how to modulate the carrier with the data downloaded to PRAM, first from
the front panel interface, and then via remote SCPI commands.

Via the Front Panel

1. Setthe carrier frequency to 2.5 Ghz (Frequency > 2.5 > GHz).

2. Set the carrier amplitude —10.0 dBm (Amplitude > -10 > dBm).

3.

4. Activate the RF output (press RF On/0ff until the display annunciator reads RF ON).

Turn modulation on (press Mod On/0ff until the display annunciator reads MOD ON).

Via the Remote Interface

Send the following SCPI commands to modulate and activate the carrier.

1

Set the carrier frequency to 2.5 Ghz:

[: SOURce] : FREQuency: FI Xed 2. 5GH#Z

2.

Set the carrier power to —10.0 dBm:

[SOURce] : PONér[: LEVel][: | Mvedi at e] [: AMPLI t ude] -10. 0DBM

3.

Activate the modulation:

: QUTPut : MCDul ati on[: STATe] ON

4,

Activate the RF output:

: QUTPut [: STATe] ON

Viewing the PRAM Waveform

After the waveform data is written to PRAM, the data pattern can be viewed using an oscilloscope. Thereis
approximately a 12-symbol delay between a state change in the burst bit and the corresponding effect at the
RF out. Thisdelay varieswith symbol rate and filter settings and requires compensation to advance the burst
bit in the downloaded PRAM file.

288

Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Save and Recall Instrument State Files

The signal generator can save instrument state settings to memory. An instrument state setting includes any
instrument state that does not survive asignal generator preset or power cycle such as frequency, amplitude,
attenuation, and other user—defined parameters. The instrument state settings are saved in memory and
organized into sequences and registers. There are 10 sequences with 100 registers per sequence available for
instrument state settings. These instrument state files are stored in the USER/ STATE directory.

The save function does not store data such as arb formats, table entries, list sweep data and so forth. Use the
store commands or store softkey functions to store these data file types to the signal generator’s memory
catalog. The save function will save areference to the data file name associated with the instrument state.

Before saving an instrument state that has a data file associated with it, store the datafile. For example, if
you are editing a multitone arb format, store the multitone data to afilein the signal generator’s memory
catalog (multitone files are stored in the USER/ MTONE directory). Then save the instrument state associated
with that datafile. The settings for the signal generator such as frequency and amplitude and a reference to
the multitone file name will be saved in the selected sequence and register number. Refer to the E4428C/38C
ESG Sgnal Generators User’s Guide and E4428C/38C ESG Sgnal Generators Key Reference for more
information on the save and recall functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using the * SAV command, in sequence
1, register 01. A comment is then added to the instrument state.

*SAV 01, 1
:MEM STAT: COMM 01, 1, "Instrument state conment”

If thereis adatafile associated with the instrument state, there will be afile name reference saved along with
the instrument state. However, the data file must be stored in the signal generator’s memory catalog as the
* SAV command does not save data files. For more information on storing file data such as modulation
formats, arb setups, and table entries refer to the Storing Files to the Memory Catalog section in the
E4428C/38C ESG Sgnal Generators User’s Guide.

NOTE File names are referenced when an instrument state is saved, but afile will NOT be stored
with the save function.

Therecall function will recall the saved instrument state. If there is a data file associated with the instrument
state, the file will be loaded aong with the instrument state. The following command recalls the instrument
state saved in sequence 1, register 01.

*RCL 01,1

Chapter 5 289

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Save and Recall Programming Example

The following programming example uses VISA and C# to save and recall signal generator instrument
states. Instruments states are saved to and recalled from your computer. This console program prompts the
user for an action: Backup State Files, Restore State Files, or Quit.

The Backup State Files choice reads the signal generator’s state files and stores it on your computer in the
same directory where the State_Files.exe program is located. The Restore State Files selection downloads
instrument state files, stored on your computer, to the signal generator’s State directory. The Quit selection
exists the program. The figure below shows the console interface and the results obtained after selecting the
Restore State Files operation.

The program uses VISA library functions. Refer to the Agilent VISA User’s Manual available on Agilent’s
website: http: \\Wwww.agilent.com for more information on VISA functions.

The program listing for the St at e_Fi | es. cs program isshown below. It isavailable on the CD-ROM in
the programming examples section under the same name.

INNTMicrosoft.NET'\Framework’¥1.1.4322" State_Filesl.e:
ackup state files

-or 3. Your choice: 2
sequence HB. register
sequence . register
sequence . register
sequence . register
sequence . register
sequence . register
sequence . register
sequence . register
sequence . register
sequence . register
sequence . register
sequence . register
sequence . register
sequence . register

1> Backup state files

2> Restore state files

3> Quit

Enter 1.2,.0r 3. Your choice:

C# and Microsoft NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and applications. There are three
components of the NET Framework: the common language runtime, class libraries, and Active Server
Pages, called ASPNET. Refer to the Microsoft website for more information on the NET Framework.

The .NET Framework must be installed on your computer before you can run the State_Files program. The
framework can be downloaded from the Microsoft website and then installed on your computer.

Perform the following steps to run the State Files program.

1. CopytheState_ Fil es. cs filefromthe CD-ROM programming examples section to the directory
where the NET Framework isinstalled.

290 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Change the TCPIPO address in the program from TCPI P0::000.000.000.000 to your ESG’s address.
Save thefileusing the. cs file name extension.

Run the Command Prompt program. St art > Run >"cnd. exe" . Change the directory for the
command prompt to the location where the .NET Framework was installed.

Typecsc. exe State Fil es. cs at the command prompt and then press the Enter key on the
keyboard to run the program. The following figure shows the command prompt interface.

nmand Prompt {3}

Microsoft Windows 2888 [Version 5.88.21951]
{C> Copyright 1985-2888 Microsoft Corp.

C:sWINNT~Microsoft .NET“Framework-wl.1.4322%csc.exe State_Files.cs

The State_Files.cs program is listed below. You can copy this program from the examples directory on the
ESG CD-ROM E4400-90501.

] R KKKk kR Kk ok ok kK K ok ok ok kK K ok ok ok kK K ok ok o kR ok ok ok o kR K ok ok kR ok ok kR R ok ok o R Rk ok kR R ok ok R R Rk ok kK Rk kK

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

Fil eNane: State_Files.cs

This C# exanpl e code saves and recalls signal generator instrunent states. The saved
instrument state files are witten to the |local conputer directory conmputer where the
State_Files.exe is located. This is a console application that uses DLL inporting to

allow for calls to the unmanaged Agilent 10 Library VISA DLL.

The Agilent VISA library nust be installed on your conputer for this exanple to run.

I mportant: Replace the visaQpenString with the |IP address for your signal generator.

] R KKk kR ok ok ok kK K ok ok kK Kk ok o kK K ok ok o kK ok ok ok kR K ok ok ok kR ok ok o kR R ok ok R R ok ok R R R ok ok R R Rk ok R R Rk kK

Chapter 5 291

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

using System

using System 1O

usi ng System Text;

using System Runtine. | nteropServices;
usi ng System Col | ecti ons;

usi ng System Text. Regul ar Expr essi ons;

namespace State_Fil es

cl ass Mai nApp
{

/1 Replace the visaOpenString variable with your instrunent's address.
static public string visaQpenString = "TCPIPO::000.000. 000. 000"; //"GPIBO::19";

/1" TCPI PO: : esg3: : | NSTR";

public const uint DEFAULT_TIMEQOUT = 30 * 1000;// Instrument timeout 30 seconds.
public const int MAX READ DEVI CE_STRING = 1024; // Buffer for string data reads.
public const int TRANSFER BLOCK SIZE = 4096;// Buffer for byte data.

/1 The nmain entry point for the application.

[STAThr ead]

static void Main(string[] args)
{

uint defaultRM// Open the default VISA resource nanager
if (Visalnterop. OpenDefaultRMout defaultRM == 0) // If no errors, proceed.
{

292 Chapter 5

ui nt device;

/1 Open the specified VISA device:

t he signal

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

gener at or

if (Visalnterop. Open(defaultRM visaOpenString, Vi saAccessMde. NoLock,

DEFAULT_TI MEQUT, out devi ce)

/1 if no errors proceed.

{

bool quit = false;

while (lquit)// Get user
{

i nput

== O)

Console. Wite("1) Backup state files\n" +

"2) Restore state files\n" +

"3) Quit\nEnter 1,2, or

string choice =
switch (choice)

{

case "1":

{
Backupl nst runent St at e(devi ce) ;
br eak;

}

case "2":
{

Rest or el nst runent St at e(devi ce) ;
break;// files to the ESG

}
case "3":
{
quit = true;
br eak;

}

defaul t:

{

br eak;

3. Your
Consol e. ReadLi ne();

choice: ");

/1 Wite instrunent state
/1 files to the conputer

/1 Read instrunment state

Chapter 5

293

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

}
}
Vi sal nterop. Cl ose(device);// Close the device
}
el se
{
Consol e. WiteLine("Unable to open " + visaOpenString);
}
Vi sal nterop. Cl ose(defaul tRM ; /1 C ose the default resource manager
}
el se
{
Consol e. WitelLine("Unable to open the VISA resource nmanager");
}

/* This nethod restores all the sequence/register state files located in
the local directory (identified by a ".STA" file nane extension)

to the signal generator.*/

static public void RestorelnstrumentState(uint device)
{
Directorylnfo di = new Directorylnfo(".");// Instantiate object class
Filelnfo[] rgFiles = di.CetFiles("*.STA"); [/ Cet the state files
foreach(Filelnfo fi in rgFiles)
{
Mat ch m = Regex. Match(fi.Nanme, @~(\d)_(\d\d)");
if (m Success)
{
string sequence = m G oups[1].ToString();
string register = m Goups[2].ToString();

Consol e. WitelLi ne("Restoring sequence #" + sequence +

294 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

", register #" + register);

/* Save the target instrunent's current state to the specified sequence/
register pair. This ensures the index file has an entry for the specified
sequence/regi ster pair. This workaround will not be necessary in future

revisions of firmare.*/

W iteDevice(device,"*SAV " + register + ", " + sequence + "\n",
true); // << on SAME line!

/!l Overwite the newy created state file with the state

/1 file that is being restored.

WiteDevice(device, "MEM DATA \"/USER/ STATE/" + m ToString() + "\",",
false); // << on SAME line!

WiteFileBl ock(device, fi.Nane);

WiteDevice(device, "\n", true);

}

/* This nmethod reads out all the sequence/register state files fromthe signal
generator and stores themin your conmputer's local directory with a ".STA"

ext ensi on */

static public void Backuplnstrument State(uint device)

{

/1l Get the nmenory catalog for the state directory
WiteDevice(device, "MEM CAT: STAT?\n", fal se);
string catal og = ReadDevi ce(device);
/* Match the catalog listing for state files which are nanmed

(sequence#) (register#) e.g. 001, 1 01, 2_05*/

Mat ch m = Regex. Match(catal og, "\"(\\d_\\d\\d),");

whil e (m Success)

Chapter 5 295

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

{
/1 Grab the matched filenane fromthe regul ar expresssion
string nextFile = m G oups[1].ToString();
/1 Retrieve the file and store with a . STA extension
/1 in the current directory
Console. WiteLine("Retrieving state file: " + nextFile);
W iteDevice(device, "NMEM DATA? \"/USER/ STATE/" + nextFile + "\"\n", true);
ReadFi | eBl ock(device, nextFile + ".STA");
/1 Clear newine
ReadDevi ce(device);
/1 Advance to next match in catalog string

m = m Next Mat ch();
}

/* This method wites an ASCI| text string (SCPI conmmand) to the signal generator.
If the bool "sendEnd" is true, the END line character will be sent at the

conclusion of the wite. If "sendEnd is false the END Iline will not be sent.*/

static public void WiteDevice(uint device, string scpi Cd, bool sendEnd)
{
byte[] buf = Encoding. ASCl|. Get Byt es(scpi Cmd) ;
if (!sendEnd) // Do not send the END line character
{
Vi sal nterop. Set Attribute(device, VisaAttribute.SendEndEnable, 0);
}
ui nt retCount;
Vi sal nterop. Wite(device, buf, (uint)buf.Length, out retCount);
if (!sendEnd) // Set the bool sendEnd true.
{
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 1);
}

296 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

/1 This method reads an ASCII string fromthe specified device
static public string ReadDevice(uint device)
{
string retvValue = "";
byte[] buf = new byte[MAX_READ DEVI CE_STRING; // 1024 bytes maxi mum read
ui nt retCount;

if (Visalnterop. Read(device, buf, (uint)buf.Length -1, out retCount) == 0)

{
retVal ue = Encodi ng. ASCI | . Get String(buf, 0, (int)retCount);
}

return retVal ue;

/* The following nmethod reads a SCPI definite block fromthe signal generator
and wites the contents to a file on your conputer. The trailing

new i ne character is NOT consuned by the read.*/

static public void ReadFileBl ock(uint device, string fileName)
{
/] Create the new, enpty data file.
FileStreamfs = new FileStrean(fil eNanme, FileMde.Create);
/1 Read the definite block header: #{IlengthDatalLength}{datalLength}
uint retCount = 0;
byte[] buf = new byte[10];
Vi sal nt er op. Read(devi ce, buf, 2, out retCount);
Vi sal nt erop. Read(devi ce, buf, (uint)(buf[1]-'0"), out retCount);
uint fileSize = U nt32. Parse(Encodi ng. ASCI | . Get String(buf, 0, (int)retCount));
/1 Read the file block fromthe signal generator
byte[] readBuf = new byte[TRANSFER BLOCK_SI ZE] ;

uint bytesRemmining = fileSize;

Chapter 5 297

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

whil e (bytesRemaining != 0)
{
uint bytesToRead = (bytesRemai ni ng < TRANSFER BLOCK_SI ZE) ?
byt esRemai ni ng : TRANSFER BLOCK_SI ZE;
Vi sal nt er op. Read(devi ce, readBuf, bytesToRead, out retCount);
fs.Wite(readBuf, 0, (int)retCount);
byt esRemai ni ng -= ret Count;
}
/1 Done with file
fs.C ose();
}

/* The following method wites the contents of the specified file to the
specified file in the formof a SCPl definite block. A newine is
NOT appended to the block and END is not sent at the conclusion of the

wite.*/

static public void WiteFileBlock(uint device, string fileName)

{

/1 Make sure that the file exists, otherwi se sends a null bl ock
if (File.Exists(fileNane))
{
FileStreamfs = new FileStreanm(fil eNane, Fil eMde. Open);
/1 Send the definite block header: #{l engthDatalLength}{datalLength}
string fileSize = fs.Length. ToString();
string fileSizeLength = fileSize.Length. ToString();
WiteDevice(device, "#" + fileSizeLength + fileSize, false);
/1 Don't set END at the end of wites
Vi sal nterop. Set Attri bute(device, VisaAttribute.SendEndEnable, 0);
/1 Wite the file block to the signal generator

byte[] readBuf = new byte[TRANSFER BLOCK_SI ZE] ;

298

Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

int nunRead = O;
uint retCount = 0;
while ((nunRead = fs. Read(readBuf, 0, TRANSFER BLOCK SIZE)) != 0)
{
Vi sal nterop. Wite(device, readBuf, (uint)nunRead, out retCount);
}
/1 Go ahead and set END on writes
Vi sal nterop. Set Attribute(device, VisaAttribute.SendEndEnable, 1);

/1 Done with file

fs.C ose();
}

el se

{

/1 Send an enpty definite block

WiteDevice(device, "#10", false);

}

}
}

/1 Declaration of VISA device access constants

publ

i c enum Vi saAccessMbde

{
NoLock = O,
Excl usi veLock = 1,
SharedLock = 2,
LoadConfig = 4

}

/1 Declaration of VISA attribute constants

publ

ic enum VisaAttribute

{
SendEndEnabl e = 0x3FFF0016,

Chapter 5 299

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

Ti meout Val ue = O0x3FFFO001A

/1 This class provides a way to call the unmanaged Agilent 10 Library VISA C

/1 functions fromthe C# application

public class Visalnterop
{
[Dil I nport("agvisa32.dl 1", EntryPoint="viC ear")]

public static extern int C ear(uint session);

[Di I I nport("agvisa32.dl 1", EntryPoint="viC ose")]

public static extern int C ose(uint session);

[Dil I nport("agvisa32.dl 1", EntryPoint="viFi ndNext")]

public static extern int FindNext(uint findList, byte[] desc);

[Dil I nport("agvisa32.dl 1", EntryPoint="viFindRsrc")]
public static extern int FindRsrc(

ui nt session,

string expr,

out uint findList,

out uint retCnt,

byte[] desc);

[Dl1Inport("agvisa32.dll", EntryPoint="viGetAttribute")]

public static extern int GetAttribute(uint vi, VisaAttribute attribute, out uint
attrState);

[Di I I nport("agvisa32.dl 1", EntryPoint="vi OQpen")]
public static extern int Open(

ui nt session,

300 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files

string rsrcNane,
Vi saAccessMbde accessMode,
uint tinmeout,

out uint vi);

[Di I I nport ("agvisa32.dl 1", EntryPoint="vi OpenDefaultRM)]

public static extern int OpenDefaul tRMout uint session);

[Di I I nport("agvisa32.dl 1", EntryPoint="vi Read")]
public static extern int Read(

uint session,

byte[] buf,

ui nt count,

out uint retCount);

[Dl1Inport("agvisa32.dll", EntryPoint="viSetAttribute")]

public static extern int SetAttribute(uint vi, VisaAttribute attribute, uint attrState);

[D Il nport("agvisa32.dll", EntryPoint="vi StatusDesc")]
public static extern int StatusDesc(uint vi, int status, byte[] desc);
[D Il nport("agvisa32.dll", EntryPoint="viWite")]

public static extern int Wite(
ui nt session,
byte[] buf,
uint count,

out uint retCount);

Chapter 5 301

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA

Download User Flatness Corrections Using C++ and VISA

This sample program uses C++ and the VISA libraries to download user—flatness correction valuesto the
signal generator. The program uses the LAN interface but can be adapted to use the GPIB interface by
changing the address string in the program.

You must include header files and resource files for library functions needed to run this program. Refer to
“Running C/C++ Programming Examples’ on page 39 for more information.

The FlatCal program asks the user to enter a number of frequency and amplitude pairs. Frequency and
amplitude values are entered by via the keyboard and displayed on in the console interface. The values are
then downloaded to the signal generator and stored to afile named flatCal_data. Thefile isthen loaded into
the signal generator’s memory catalog and corrections are turned on. The figure below shows the console
interface and several frequency and amplitude values. Use the same format, shown in the figure below, for
entering frequency and amplitude pairs (for example, 12ghz, 1.2db).

Figure 5-4 FlatCal Console Application
"E:\Flatl:al.exe'
Example Program to Download User Flatness Corrections I’
Enter number of frequency and amplitude pairs: 2 .

Enter Power 2: 2.4db

Flatness Data saved to file : flatCal_data

Flatness Corrections Enabled

Press any key to continue

The program uses VISA library functions. The non—formatted viWrite VISA function is used to output data
to the signal generator. Refer to the Agilent VISA User’s Manual available on Agilent’s website:
http: \\Wwww.agilent.com for more information on VISA functions.

The program listing for the FlatCal program is shown below. It is available on the CD—ROM in the
programming examples section asf | at cal . cpp.

302 Chapter 5

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA

//**

/1 PROGRAM NAME: Fl at Cal . cpp

/1

/1 PROGRAM DESCRI PTI ON: C++ Consol e application to input frequency and anplitude

/1 pairs and then downl oad themto the signal generator

/1

/1 NOTE: You nust have the Agilent 10 Libraries installed to run this program

/1

/1 This exanple uses the LAN TCPIP interface to downl oad frequency and anplitude

/1 correction pairs to the signal generator. The program asks the operator to enter

/1 the nunmber of pairs and allocates a pointer array listPairs[] sized to the nunber
/1 of pairs.The array is filled with frequency nextFreq[] and anplitude nextPower[]

/1 values entered fromthe keyboard

/1

R T T T T T T,
/1 1 MPORTANT: Repl ace the 000.000.000.000 |IP address in the instQpenString declaration

/1 in the code below with the | P address of your signal generator

VR R EE AR EEEEEREEEEEEEEEEEEEEEEEREEEEEEEEEEEEEREEEEEEREEEEEEEEEEEEEEEEEEEEEE R

#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i nclude "visa.h"

#i ncl ude <string. h>

I | MPORTANT:

11 Configure the following |IP address correctly before conpiling and running

char* instOpenString ="TCPI PO: : 000. 000. 000. 000: : I NSTR'; //your PSG s |P address

const int MAX_STRI NG LENGTH=20;//1 ength of frequency and power strings
const int BUFFER_SI ZE=256;//1ength of SCPI command string

Chapter 5 303

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA

int main(int argc, char* argv[])

{
Vi Sessi on defaul tRM vi;

Vi Status status = 0;

status = vi OpenDef aul t RM &defaul tRM ;//open the default resource nanager
//TO DO Error handling here

status = vi Open(defaul tRM instOpenString, VI_NULL, VI_NULL, &vi);

if (status)//if any errors then display the error and exit the program
{

fprintf(stderr, "viOpen failed (%)\n", instOpenString);

return -1;

printf("Exanple Programto Downl oad User Flatness Corrections\n\n");
printf("Enter number of frequency and anplitude pairs: ");

int num= 0;

scanf ("%d", &nun);

if (num> 0)

{
int lenArray=nunt2;//length of the pairsList[] array. This array
//will hold the frequency and anplitude arrays

char** pairsList = new char* [lenArray]; //pointer array

for (int n=0; n < lenArray; n++)//initialize the pairsList array

/] pai rsLi st [n] =0;

304 Chapter 5

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA

for (int i=0; i < num i++)

{
char* nextFreq = new char[MAX_STRI NG LENGTH+1]; //frequency array
char* next Power = new char[MAX_STRI NG LENGTH+1];//anplitude array
/lenter frequency and anplitude pairs i.e 10ghz .1db
printf("Enter Freq %d: ", i+1);
scanf ("%", nextFreq);
printf("Enter Power %d: ",i+1);
scanf (" %", nextPower);
pairsList[2*i] = nextFreq;//frequency

pai rsLi st[2*i +1] =next Power ; / / power correction

unsi gned char str[256];//buffer used to hold SCPI comand

/linitialize the signal generator's user flatness table

sprintf((char*)str,":corr:flat:pres\n"); //wite to buffer

viWite(vi, str,strlen((char*str),0); //wite to PSG

char ¢ ="',"';//comm separator for SCPl command

for (int j=0; j< num j++) /1 downl oad pairs to the PSG
{

sprintf((char*)str,":corr:flat:pair % % %\n",pairsList[2*j], c,
pai rsList[2*j+1]); // << on SAME li ne!

viWite(vi, str,strlen((char*)str),0);
}
//store the downl oaded correction pairs to PSG nenory
const char* fileNane = "flatCal _data";//user flatness file nanme
//wite the SCPI command to the buffer str
sprintf((char*)str, ":corr:flat:store \"%\"\n", fileNane);//wite to buffer
viWite(vi,str,strlen((char*)str),0);//wite the conmand to the PSG

printf("\nFlatness Data saved to file : %\n\n", fileNane);

Chapter 5 305

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA

//load corrections
sprintf((char*)str,":corr:flat:load \"%\"\n", fileNanme); //wite to buffer
viWite(vi,str,strlen((char*)str),0); //wite conmand to the PSG
//turn on corrections
sprintf((char*)str, ":corr on\n");
viWite(vi,str,strlen((char*)str),0");
printf("\ nFl atness Corrections Enabled\n\n");
for (int k=0; k< lenArray; k++)
{

delete [] pairsList[k];//free up menory

}

delete [] pairsList;//free up nenory

vi Cl ose(vi);//close the sessions

vi Cl ose(defaul tRM ;

return O;

306 Chapter 5

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

Data Transfer Troubleshooting

NOTE Thisfeature is available only in E4438C ESG Vector Signal Generators with Option
001/601 or 002/602.

This section is divided by the following data transfer method:
“User File Download Problems” on page 307
“User FIR Filter Coefficient File Download Problems” on page 309
“Direct PRAM Download Problems’ on page 310

Each section contains the foll owing troubl eshooting information:

» alist of symptoms and possible causes of typical problems encountered while downloading data to the
signal generator

» reminders regarding special considerations, file requirements, and data limitations

» tipson creating data, transferring data, data application and memory usage

User File Download Problems

Table 5-2 User FIR File Download Trouble - Symptoms and Causes

Symptom Possible Cause

Not enough datato fill asingletimeslot.

If auser file does not completely fill asingle timedlot, the firmware will not load any data

No data modul ated into the timeslot. For example, if atimeslot’s data field should contain 114 bits, and only
100 bits are provided in the user file, no datawill be loaded into the data field of the
timeslot. Therefore, no datawill be detected at the RF outpui.

Data does not completely fill an integer number of timeslots.
At RF output, If auser filefills the datafields of more than one timeslot in a continuously repeating
some data modul ated, framed transmission, the user file will be restarted after the last timeslot containing
some data missing completely filled data fields. For example, if the user file contains enough datato fill the

datafields of 3.5 timedots, firmware will load 3 timeslots with data and restart the user
file after the third timeslot. The last 0.5 timeslot worth of data will never be modul ated.

Chapter 5 307

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

Data Requirement Reminders
To avoid user-file data download problems, the following conditions must be met:

1. Theuser file selected must entirely fill the data field of each timeslot.

2. For binary memory downloads, the user file must be a multiple of 8 bits, so that it can be represented in
ASCII characters.

3. Available PRAM must be large enough to support both the data field bits and the framing bits.
Requirement for Continuous User File Data Transmission

“Full Data Field” Requirements

If auser file does not completely fill asingletimeslot, the firmware does not |oad any datainto that timeslot.
For example, if atimeslot’s datafield should contain 114 bits, and only 100 bits are provided in the user file,
no datais loaded into the timeslot data field, and no datais transmitted at the RF output.

To solve this problem, add bits to the user file until it completely fills the data field of the active protocol.

“Integer Number of Timeslots” Requirement for Multiple-Timeslots

If auser filefills the data fields of more than one timeslot in a continuously repeating framed transmission,
the user file is restarted after the last timeslot containing completely filled data fields. For example, if the
user file contains enough data to fill the datafields of 3.5 timeslots, firmware loads 3 timesl ots with data and
restart the user file after the third timeslot. The last 0.5 timeslot worth of data is never modul ated.

To solve this problem, add or subtract bits from the user file until it completely fills an integer number of
timeslots
“Multiple-of-8-Bits” Requirement

For downloads to binary memory, user file data must be downloaded in multiples of 8 bits, since SCPI
specifies datain 8-hit bytes. Therefore, if the original data pattern’s length is not a multiple of 8, you may
need to:

* Add additional bits to complete the ASCII character
» replicate the data pattern to generate a continuously repeating pattern with no discontinuity

» truncate the remaining bits

NOTE The “multiple-of-8-bits’ data length requirement (for binary memory downloads) isin
addition to the requirement of completely filling the data field of an integer number of
timeslots.

308 Chapter 5

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

Using Externally Generated, Real-Time Data for Large Files

The data fields absolutely must be continuous data streams, and the size of the data exceeds the available
PRAM, real-time data and synchronization can be supplied by an external data source to the front-panel
DATA, DATA CLOCK, and SYMBOL SY NC connectors. This data can be continuously transmitted, or can
be framed by supplying a data-synchronous burst pulse to the EXT1 INPUT connector on the front panel.
Additionally, the external data can be multiplexed into internally generated framing

User FIR Filter Coefficient File Download Problems

Table 5-3 User FIR File Download Trouble - Symptoms and Causes

Symptom Possible Cause

There is not enough memory available for the FIR coefficient file
being downloaded.

ERROR -321, Out of memory
To solve the problem, either reduce the file size of the FIR file or
delete unnecessary files from memory.

User FIR filter has too many symbols.

ERROR -223, Too much data | Real Time cannot use afilter that has more than 64 symbols (512
symbols maximum for ARB). You may have specified an incorrect
oversampleratio in the filter table editor.

Data Requirement Reminders

To avoid user FIR filter coefficient data download problems, the following conditions must be met:
1. Datamust bein ASCII format.

2. Downloads must bein list format.

3. Filters containing more symbols than the hardware allows (64 for Real Time and 512 for ARB) will not
be selectable for that configuration.

Chapter 5 309

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

Direct PRAM Download Problems

Table 5-4 Direct-to-PRAM Download Trouble - Symptoms and Causes

Symptom

Possible Cause

The transmitted patternis

interspersed with random, unwanted

data.

Pattern reset bit not set.

Insure that the pattern reset hit (bit 7, value 128) is set on the last byte of your
downloaded data.

ERROR -223, Too much data

PRAM download exceeds the size of PRAM memory.

Either use a smaller pattern or get more memory by ordering the appropriate
hardware option.

Data Requirement Reminders

To avoid direct-download-to-PRAM problems, the following conditions must be met:

1. Thedatamust bein binary form.

2. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

Table 5-5 PRAM Byte Information
Bit Function Value Comments
0 Data 0/1 This bit isthe datato be modulated. This bit is“unspecified” when burst
(bit 2) issetto 0.
1 Reserved 0 Always 0
2 Burst 0/1 Setto1=RFon
Set to 0 = RF off
For non-bursted, non-TDMA systems, this bit is set to 1 for all memory
locations, leaving the RF output on continuously. For framed data, this
bit is set to 1 for on timeslots and O for off timeslots.
3 Reserved 0 Always 0
4 Reserved 1 Always 1
5 Reserved 0 Always0
310 Chapter 5

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

Table 5-5 PRAM Byte Information
Bit Function Value Comments
6 Event 1 Output 0/1 Setting this bit to 1 causes aleve transition at the EVENT 1 BNC

connector. This can be used for many functions. For example, asa
marker output to trigger external hardware when the data pattern has
restarted, or to create a data-synchronous pulse train by toggling this bit
in alternate addresses.

7 Pattern Reset 0/1 Set to 0 = continue to next sequential memory address.

Set to 1 = end of memory and restart memory playback.

Thishit isset to O for all bytes except the last address of PRAM. For the
last address (byte) of PRAM, it is set to 1 to restart the pattern.

Chapter 5 31

Creating and Downloading User-Data Files
Data Transfer Troubleshooting

312 Chapter 5

Symbols
.NET framework, 289

Numerics
2's complement data format, 176

A

abort function, 11
add device, 5
address
GPIB address, 9
IP address, 16
Adgilent
BASIC, 6, 43
SICL, 42
VISA, 9, 16, 28, 42
Agilent BASIC, 6, 43
Agilent 10 Libraries, 3, 4
Adgilent 10 Libraries Suite, 3
Agilent Signal Studio, 210
Agilent Signal Studio Toolkit, 168
Agilent VISA, 9, 16, 28, 42
Agilent VISA COM Resource Manager 1.0, 40
ARB waveform file downloads
data requirements, 168
download utilities, 168, 210
playing downloaded waveforms, 207
ASCII, 14

B

Baseband Studio for Waveform Capture and
Playback, 182
BASIC
ABORT, 11
CLEAR, 13
ENTER, 14
LOCAL, 13
LOCAL LOCKOUT, 12
OUTPUT, 14
REMOTE, 11
big endian and little endian (byte order), 171
changing byte order, 172
interleaving and byte swapping, 197
big-endian, 247

Index

binary memory catalog user file downloads, 276
binary memory vs. bit memory, 269
bit memory catalog user file downloads, 274
bit memory vs. binary memory, 269
bit status, how and what to monitor, 130
bit values, 129
bits and bytes, 170
byte order
byte swapping, 172
changing byte order, 172
interleaving 1/Q data, 197
little endian and big endian, 171

C
C#, 289, 290
C++ programming examples, 214
CIC++,6
include files, 39
clear command, 13
clear function, 13
CLS command, 133
command prompt, 18, 115
commands
abort function, 11
clear function, 13
enter function, 14
local function, 13
local lockout function, 12
output function, 14
remote function, 11
computer interface, 3
condition registers
description, 138
connection expert, 3
connection wizard, 3
controller, 10
creating and downloading waveform files, 167
creating waveform data, 193
saving to atext file for review, 196
csc.exe, 289

D

DAC input values, 173
data encryption, 187

Index

313

Index

data format

E443xB signal generator, 211

data limitations
FIR filter downloads, 279
PRAM downloads, 283
user file downloads, 270

data questionable filters
See also filters
BERT transition, 165
calibration transition, 161
frequency transition, 155
modulation transition, 158
power transition, 152
transition, 149

data questionable groups
See also status groups
BERT status, 163
calibration status, 160
frequency status, 154
modulation status, 157
power status, 151
status, 147

data questionable registers
See also registers
BERT condition, 164
BERT event, 165
BERT event enable, 165
calibration condition, 161
calibration event, 161

calibration event enable, 162

condition, 148

event, 149

event enable, 150
frequency condition, 155
frequency event, 156

frequency event enable, 156

modulation condition, 158
modulation event, 159

modulation event enable, 159

power condition, 152

power event, 153

power event enable, 153
data requirements, 168

FIR filter downloads, 279

user file downloads, 269

datatransfer, 3
datavolatility
PRAM downloads, 283
user file downloads, 270
datablock, 287
decryption, 187
developing programs, 38, 39
DHCP, 17, 32
DNS, 18
DOS command prompt, 22
download
libraries, 9, 16
user flatness, 289
utilities

Adgilent Signal Studio Toolkit, 168

differences, 210

IntuiLink for PSG/ESG Signal Generators, 168

PSG/ESG Download Assistant, 168
waveform data, 167, 200, 267
advanced programming languages, 203

commands, 186

E443xB signal generator files, 174, 211
encrypted files for extraction, 190
encrypted files for no extraction, 189

FIR filter coefficient data, 279

ftp procedures, 191
memory locations, 187
playing waveforms, 207
simulation software, 200

unencrypted files for extraction, 189
unencrypted files for no extraction, 188

user files, 268
downloading
C++, 230
using Visual Basic, 251
VISA, 230

E

E443xB files, 211, 235
downloading, 213
formatting, 174, 211
storing, 211

E443xB programming examples, 255

edit visa config, 5
EnableRemote, 12

314

Index

encryption, 186, 187
downloading for extraction, 190
downloading for no extraction, 189
extracting waveform data, 191
end-of-file indicator, 188
enter function, 14
error messages, 34
errors, 19, 34
ESE commands, 133
even number of samples, 180
event enable register, description, 138
event registers, description, 138
example programs, 214
C++, 214
E443xB files, 235, 255
HP Basic, 255
MATLAB, 243
Visual Basic, 247
examples
downloading with Visual Basic, 251
save and recall, 290
Telnet, 26
extract waveform data, 186, 189-191

F
files
decryption, 187
download utilities, 210
encryption, 186, 187
extraction commands and file paths, 188
header information, 178, 187
transfer methods, 187
transferring, 26
waveform structure, 178
filters
See also data questionabl e filters
See also transition filters
negative transition, description, 138
positive transition, description, 138
firmware status, monitoring, 130
flatness corrections, 302
ftp, 26, 187
commands for downloading and extracting files,
190-191
procedures for downloading files, 191

Index

web server information, 32
web server procedure, 192

G

Getting Started Wizard, 10
GPIB, 3
address, 9
cables, 9
card installation, 7
configuration, 9
controller, 10
interface, 7
10 libraries, 9
listener, 10
on UNIX, 8
overview, 7
program examples, 42
SCPI commands, 10
talker, 10
verifying operation, 10

H

hardware status, monitoring, 130
hexadecimal data, 247

hostname, 16

HP Basic programming examples, 255
HyperTerminal, 30

1/Q data
creating with advanced programming languages,
194
encryption, 186, 187
interleaving, 176, 197
big endian and little endian, 197
byte swapping, 197
memory locations, 184, 198
saving to atext file for review, 196
scaling, 174
waveform structure, 180
iabort, 11
ibloc, 13
ibstop, 11
ibwrt, 14

Index

315

Index

iclear, 14

|EEE standard, 7

igpibllo, 12

include files, 302

input values, DAC, 173
instrument communication, 4
instrument state files, 289
instrument status, monitoring, 126
interactiveio, 3

interface, 3

interface cards, 7

interleaving, See I/Q data, 176
IntuiLink for PSG/ESG Signal Generators, 172, 210
io config, 3, 4

IO Config program, 5

10 interface, 4

1O libraries, 2, 3,7, 9, 10, 28

IP address, 16

iremote, 12

J
Java, example, 115

L
LabView, 6
LAN, 3
DHCP configuration, 17
end-of-file indicator, 188
establishing a connection, 201, 203
hostname, 16
interface, 3
1O libraries, 16
manual configuration, 17
overview, 16
program examples, 80
sockets, 80
sockets LAN, 16
Telnet, 22
verifying operation, 18
VXI-11, 16, 80
lan configuration, 32
languages, 38
libraries, 2, 3, 9, 10, 16, 28
list, error messages, 34

listener, 10

little endian and big endian, 171
changing byte order, 197
interleaving and byte swapping, 197

local echo telnet, 25

local function, 13

local lockout function, 12

LSB and MSB, 171

LSB/MSB, 247

M

manual operation, 11
marker file, 178, 187
MATLAB
download utility, 210
downloading data, 200
MATLAB programming examples, 243
memory
allocation, 185
defined, 184
locations, 184
non-volatile (NVWFM), 187
size, 185
volatile (WFM1), 187
Microsoft .NET Framework, 290
MSB and LSB, 171
MS-DOS command prompt, 18, 22

N

National Instruments
NI-488.2, 42
NI-488.2 include files, 39
VISA, 9, 16, 28, 42
negative transition filter, description, 138
net framework, 289
NI-488.2, 9, 16, 28
EnableRemote, 12
iblcr, 13
ibloc, 13
ibrd, 15
ibstop, 11
ibwrt, 14
SetRWLS, 12
non-volatile memory, 184, 187

316

Index

memory allocation, 185

0

OPC commands, 133
output
command, 14
function, 14

P

pattern RAM, 283
pc, 247
PCI-GPIB, 42
PERL
example, 114
personal computer, PC, 7
phase discontinuity, 181
avoiding, 182
Baseband Studio for Waveform Capture and
Playback, 182
samples, 183
phase distortion, 181
ping program, 18
polling method (status registers), 131
ports, 85
positive transition filter, description, 138
PRAM, 283
PRAM downloads
in block format, 286
preliminary setup, 286
sample commands line, 287
SCPI commands, 287
in list format, 284, 285
preliminary setup, 285
SCPI commands, 285
modul ating and activating the carrier, 288
problems
PRAM downloads, 310
user file downloads, 307
user FIR filter downloads, 309
programming examples, 214
C#, 290
C++, 214
E443xB files, 235, 255
HP Basic, 255

MATLAB, 243
using GPIB, 42
using LAN, 80
using RS-232, 118
Visual Basic, 247, 251
programming languages, 38
byte swapping for little endian order, 197
C#,40
CIC++, 39
creating waveform data, 193
downloading waveform data, 200
Java, 115
PERL, 114
Visual Basic, 40
PSG/ESG Download Assistant, 210

Q

queue, error, 34

R

recall states, 289
register system overview, 126
registers
See also data questionabl e registers
See also status registers
condition, description, 138
in status groups (descriptions), 138
overall system, 127, 128
standard event status, 140
standard event status enable, 140
standard operation condition, 142, 145
standard operation event, 143, 146
standard operation event enable, 143, 146
status byte, 136
remote
annunciator, 118
function, 11
remote interface, 2
GPIB, 8
RS-232, 28
requirements, waveform data, 168
RS-232, 3
address, 118
baud rate, 29

Index

Index

317

Index

cable, 29
configuration, 29

echo, 29

format parameters, 31
interface, 29

1O libraries, 28
overview, 28

program examples, 118
settings, baud rate, 118
verifying operation, 30

S

sample command line, 285
samples
even number, 180
waveform, 180
save and recall, 289
scaling 1/Q data, 174
SCP, 6, 7, 32
SCPI commands, 10
command line structure, 187
download E443xB files, 213
encrypted files, 189, 190
end-of-file indicator, 188
extraction, 186, 188, 189, 190
| EEE 488.2 common commands for status
registers, 133
no extraction, 188, 189
playing downloaded waveforms, 207
PRAM downloads (block format), 287
preliminary setup, 287
sample command line, 287
PRAM downloads (list format), 285
preliminary setup, 285
sample command line, 285

PRAM downloads (modulating and activating the

carrier), 288
unencrypted files, 188, 189
user file downloads, 275, 276
querying the PRAM data, 275, 276
sample command line, 276
user FIR file downloads
sample command line, 280
SCPI error queue, 34
SCPI file transfer methods, 187

SCPI register model, 126
securewave directory, 187
downloading encrypted files, 190
extracting waveform data, 191
service request method
status registers, 131
using, 131
SetRWLS, 12
SICL, 9, 16, 28, 42
iabort, 11
iclear, 14
igpibllo, 12
iprintf, 14
iremote, 12
iscanf, 15
signal generator
monitoring status, 126
Signal Studio Toolkit, 168, 210
simulation software, 200
sockets
example, 85, 838
Java, 115
LAN, 16, 80, 85
PERL, 114
UNIX, 85
Windows, 86
sockets LAN, 21
softwarelibraries, 10, 3
SRE commands, 133
SRQ command, 131
SRQ method (status registers), 131
standard event
status enabl e register, 140
status group, 139
status register, 140
standard operation
condition register, 142, 145
event enable register, 143, 146
event register, 143, 146
status group, 141, 144
trangition filters, 143, 145
statefiles, 289
status byte
group, 135
overall register system, 127, 128

318

Index

register, 136
status groups

See also data questionable groups

registers, 138
standard event, 139
standard operation, 141, 144
status byte, 135

status registers
See also registers
accessing information, 130
bit values, 129
hierarchy, 126
how and what to monitor, 130
in status groups, 138
overall system, 127, 128
programming, 125
SCPI commands, 133
SCPI model, 126
setting and querying, 133
standard event, 140
standard event status enable, 140
system overview, 126
using, 129

STB command, 133

system requirements, 38

T

talker, 10
TCP/IP, 4,21, 32
Telnet
DOS command prompt, 22
example, 26
PC, 23
UNIX, 25, 26
using, 22
Windows 2000, 24
Toolkit, Signal Studio, 168, 210
transition filters
See also filters
description, 138
standard operation, 143, 145
troubleshooting
ping response errors, 19
PRAM downloads, 310
RS-232, 31

Index

user file downloads, 307
user FIR filter downloads, 309

u

unencrypted files
downloading for extraction, 189
downloading for no extraction, 188
UNIX, 7
user file downloads, 274
modulating and activating the carrier, 278
selecting the user file as the data source, 277
user files
as data sources for frames transmissions, 270
in framed mode, 268
in pattern mode, 268
multiple user files as data sources, 273
user FIR file downloads, 280
selecting a downloaded user FIR file, 280
user flatness, 289, 302
user-datafiles, 267
creating, 267
downloading, 267

v
viPrintf, 14, 302
VISA, 9, 16, 28
includefiles, 39
library, 42, 247
scanf, 15
viClear, 13
viPrintf, 14
viTerminate, 11
VISA Assistant, 4, 10
VISA COM 10 Library, 40
visa.h, 302
Visua Basic, 6
IDE, 40
references, 40
Visua Basic programming examples, 247
viTerminate, 11
viWrite, 302
volatile memory, 184, 187
memory allocation, 185
VXI-11, 20, 80

Index

319

Index

programming, 80
with SICL, 80
with VISA, 83

w

waveform data
2's complement data format, 176
bits and bytes, 170
byte order, 172
byte swapping, 172
commands for downloading and extracting,
186-192
creating, 193
DAC input values, 173
data requirements, 168
encryption, 186-191
explained, 170
| and Q interleaving, 176
LSB and MSB, 171
saving to atext file for review, 196
waveform downloads
memory, 184
allocation, 185
Size, 185
volatile and non-volatile, 184
samples, 180
structure, 180
troubleshooting files, 265
using advanced programming languages, 203
using download utilities, 210
using HP BASIC, 255-263
using simulation software, 200
with Visua Basic 6.0, 251
waveform generation
with Visual Basic 6.0, 247
web server, 32
Windows 2000, 24
Windows NT, 3, 4
Writel EEEBIlock, 251

320 Index

	Title Page
	Table of Contents
	1 Getting Started
	Introduction to Remote Operation
	Interfaces
	I/O Libraries
	Agilent IO Libraries Suite
	Windows NT
	Programming Language

	Using GPIB
	1. Installing the GPIB Interface Card
	2. Selecting I/O Libraries for GPIB
	3. Setting Up the GPIB Interface
	4. Verifying GPIB Functionality
	GPIB Interface Terms
	GPIB Function

	Using LAN
	1. Selecting I/O Libraries for LAN
	2. Setting Up the LAN Interface
	3. Verifying LAN Functionality
	Using VXI-11
	Using Sockets LAN
	Using Telnet LAN
	Using FTP

	Using RS-232
	1. Selecting I/O Libraries for RS-232
	2. Setting Up the RS-232 Interface
	3. Verifying RS-232 Functionality
	Character Format Parameters
	If You Have Problems

	Communicating with the Signal Generator Using a Web Browser
	Error Messages
	Error Message File
	Error Message Types

	2 Programming Examples
	Using the Programming Examples
	Programming Examples Development Environment
	Running C/C++ Programming Examples
	Running Visual Basic 6.0
	Running C# Programming Examples

	GPIB Programming Examples
	Before Using the Examples
	Interface Check using Agilent BASIC
	Interface Check Using NI-488.2 and C++
	Interface Check using VISA and C
	Local Lockout Using Agilent BASIC
	Local Lockout Using NI-488.2 and C++
	Queries Using Agilent BASIC
	Queries Using NI-488.2 and C++
	Queries Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal AC-Coupled FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C
	Generating a Swept Signal Using VISA and Visual C++
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C

	LAN Programming Examples
	Before Using the Examples
	VXI-11 Programing
	Sockets LAN Programming using C
	Sockets LAN Programming Using PERL
	Sockets LAN Programming Using Java

	RS-232 Programming Examples
	Before Using the Examples
	Interface Check Using Agilent BASIC
	Interface Check Using VISA and C
	Queries Using Agilent BASIC
	Queries Using VISA and C

	3 Programming the Status�Register�System
	Overview
	Status Register Bit Values
	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Baseband Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group
	Data Questionable BERT Status Group

	4 Creating and Downloading Waveform Files
	Overview
	Waveform Data Requirements

	Understanding Waveform Data
	Bits and Bytes
	LSB and MSB (Bit Order)
	Little Endian and Big Endian (Byte Order)
	Byte Swapping
	DAC Input Values
	2’s Complement Data Format
	I and Q Interleaving

	Waveform Structure
	File Header
	Marker File
	I/Q File
	Waveform

	Waveform Phase Continuity
	Phase Discontinuity, Distortion, and Spectral Regrowth
	Avoiding Phase Discontinuities

	Waveform Memory
	Memory Allocation
	Memory Size

	Commands for Downloading and Extracting Waveform Data
	Waveform Data Encryption
	File Transfer Methods
	SCPI Command Line Structure
	Commands and File Paths for Downloading and Extracting Waveform Data
	ftp:procedures for downloading files;download:waveform data:ftp procedures

	Creating Waveform Data
	Code Algorithm

	Downloading Waveform Data
	Using Simulation Software
	Using Advanced Programming Languages

	Loading, Playing, and Verifying a Downloaded Waveform
	Loading a File from Non-Volatile Memory
	Playing the Waveform
	Verifying the Waveform

	Using the Download Utilities
	Downloading E443xB Signal Generator Files
	E443xB Data Format
	Storage Locations for E443xB ARB files
	SCPI Commands

	Programming Examples
	C++ Programming Examples
	MATLAB Programming Example
	Visual Basic Programming Examples
	HP Basic

	Troubleshooting Waveform Files

	5 Creating and Downloading User-Data Files
	User Bit/Binary File Data Downloads
	Framed and Unframed Data Types
	Data Requirements
	Data Limitations
	Data Volatility
	User Files as Data Source for Framed Transmission
	Multiple User Files Selected as Data Sources for Different Timeslots
	Downloading User File Data
	Selecting Downloaded User Files as�the�Transmitted�Data
	Modulating and Activating the Carrier

	FIR Filter Coefficient Downloads
	Data Requirements
	Data Limitations
	Downloading FIR Filter Coefficient Data
	Selecting a Downloaded User FIR Filter as the Active�Filter

	Downloads Directly into Pattern RAM (PRAM)
	Data Limitations
	Downloading in List Format
	Downloading in Block Format
	Modulating and Activating the Carrier
	Viewing the PRAM Waveform

	Save and Recall Instrument State Files
	Save and Recall Programming Example

	Download User Flatness Corrections Using C++ and VISA
	Data Transfer Troubleshooting
	User File Download Problems
	User FIR Filter Coefficient File Download Problems
	Direct PRAM Download Problems

	Index

