
Programming Guide

Agilent Technologies
E4428C/38C ESG Signal Generators

This guide applies to the following signal generator models:
E4428C ESG Analog Signal Generator
E4438C ESG Vector Signal Generator

Due to our continuing efforts to improve our products through firmware and hardware revisions, signal
generator design and operation may vary from descriptions in this guide. We recommend that you use the
latest revision of this guide to ensure you have up-to-date product information. Compare the print date of this
guide (see bottom of page) with the latest revision, which can be downloaded from the following website:
http://www.agilent.com/find/esg
Manufacturing Part Number: E4400-90505

Printed in USA

August 2005

© Copyright 2001-2005 Agilent Technologies, Inc.

Notice
The material contained in this document is provided “as is”, and is subject to being changed, without notice,
in future editions.

Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express
or implied with regard to this manual and to any of the Agilent products to which it pertains, including but
not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not
be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or
performance of this document or any of the Agilent products to which it pertains. Should Agilent have a
written contract with the User and should any of the contract terms conflict with these terms, the contract
terms shall control.

Questions or Comments about our Documentation?
We welcome any questions or comments you may have about our documentation. Please send us an E-mail
at sources_manuals@am.exch.agilent.com.
ii

Contents
1. Getting Started . 1
Introduction to Remote Operation .2

Interfaces .3

I/O Libraries .3

Agilent IO Libraries Suite .3

Windows NT .4

Programming Language .6

Using GPIB .7

1. Installing the GPIB Interface Card .7

2. Selecting I/O Libraries for GPIB .9

3. Setting Up the GPIB Interface .9

4. Verifying GPIB Functionality .10

GPIB Interface Terms .10

GPIB Function Statements .10

Using LAN .16

1. Selecting I/O Libraries for LAN .16

2. Setting Up the LAN Interface .16

3. Verifying LAN Functionality .18

Using VXI-11 .20

Using Sockets LAN .21

Using Telnet LAN .22

Using FTP .26

Using RS-232 .28

1. Selecting I/O Libraries for RS-232 .28

2. Setting Up the RS-232 Interface .29

3. Verifying RS-232 Functionality .30

Character Format Parameters .31

If You Have Problems .31

Communicating with the Signal Generator Using a Web Browser .32

Error Messages .34

Error Message File .34

Error Message Types. .35

2. Programming Examples .37
Using the Programming Examples .38

Programming Examples Development Environment .38

Running C/C++ Programming Examples .39

Running Visual Basic 6.0® Programming Examples .40
iii

Contents

Running C# Programming Examples . 40

GPIB Programming Examples . 42

Before Using the Examples . 42

Interface Check using Agilent BASIC . 43

Interface Check Using NI-488.2 and C++ . 44

Interface Check using VISA and C. 45

Local Lockout Using Agilent BASIC. 46

Local Lockout Using NI-488.2 and C++ . 48

Queries Using Agilent BASIC . 49

Queries Using NI-488.2 and C++. 51

Queries Using VISA and C. 54

Generating a CW Signal Using VISA and C . 56

Generating an Externally Applied AC-Coupled FM Signal Using VISA and C 59

Generating an Internal AC-Coupled FM Signal Using VISA and C . 61

Generating a Step-Swept Signal Using VISA and C . 63

Generating a Swept Signal Using VISA and Visual C++. 65

Saving and Recalling States Using VISA and C . 67

Reading the Data Questionable Status Register Using VISA and C . 70

Reading the Service Request Interrupt (SRQ) Using VISA and C. 75

LAN Programming Examples . 80

Before Using the Examples . 80

VXI-11 Programing . 80

Sockets LAN Programming using C . 85

Sockets LAN Programming Using PERL . 114

Sockets LAN Programming Using Java . 115

RS-232 Programming Examples . 118

Before Using the Examples . 118

Interface Check Using Agilent BASIC . 118

Interface Check Using VISA and C . 119

Queries Using Agilent BASIC . 121

Queries Using VISA and C. 122

3. Programming the Status Register System . 125
Overview . 126

Status Register Bit Values . 129

Accessing Status Register Information . 130

Determining What to Monitor . 130

Deciding How to Monitor. 131
 iv

Contents

Status Register SCPI Commands .133

Status Byte Group .135

Status Byte Register .136

Service Request Enable Register. .137

Status Groups .138

Standard Event Status Group .139

Standard Operation Status Group .141

Baseband Operation Status Group .144

Data Questionable Status Group .147

Data Questionable Power Status Group .151

Data Questionable Frequency Status Group .154

Data Questionable Modulation Status Group .157

Data Questionable Calibration Status Group .160

Data Questionable BERT Status Group .163

4. Creating and Downloading Waveform Files .167
Overview. .168

Waveform Data Requirements .168

Understanding Waveform Data. .170

Bits and Bytes .170

LSB and MSB (Bit Order) .171

Little Endian and Big Endian (Byte Order) .171

Byte Swapping .172

DAC Input Values .173

2’s Complement Data Format .176

I and Q Interleaving. .176

Waveform Structure .178

File Header .178

Marker File .178

I/Q File .180

Waveform .180

Waveform Phase Continuity .181

Phase Discontinuity, Distortion, and Spectral Regrowth .181

Avoiding Phase Discontinuities. .182

Waveform Memory. .184

Memory Allocation .185

Memory Size .185
v

Contents

Commands for Downloading and Extracting Waveform Data. 186

Waveform Data Encryption . 186

File Transfer Methods. 187

SCPI Command Line Structure . 187

Commands and File Paths for Downloading and Extracting Waveform Data 188

FTP Procedures. 191

Creating Waveform Data . 193

Code Algorithm . 193

Downloading Waveform Data . 200

Using Simulation Software. 200

Using Advanced Programming Languages . 203

Loading, Playing, and Verifying a Downloaded Waveform. 207

Loading a File from Non-Volatile Memory . 207

Playing the Waveform. 207

Verifying the Waveform . 208

Using the Download Utilities . 210

Downloading E443xB Signal Generator Files . 211

E443xB Data Format . 211

Storage Locations for E443xB ARB files. 211

SCPI Commands. 213

Programming Examples . 214

C++ Programming Examples . 214

MATLAB Programming Example . 243

Visual Basic Programming Examples. 247

HP Basic Programming Examples . 255

Troubleshooting Waveform Files . 265

5. Creating and Downloading User-Data Files. 267
User Bit/Binary File Data Downloads . 268

Framed and Unframed Data Types . 268

Data Requirements . 269

Data Limitations . 270

Data Volatility . 270

User Files as Data Source for Framed Transmission . 270

Multiple User Files Selected as Data Sources for Different Timeslots . 273

Downloading User File Data . 274

Selecting Downloaded User Files as the Transmitted Data . 277

Modulating and Activating the Carrier . 278
 vi

Contents

FIR Filter Coefficient Downloads .279

Data Requirements .279

Data Limitations .279

Downloading FIR Filter Coefficient Data. .280

Selecting a Downloaded User FIR Filter as the Active Filter. .280

Downloads Directly into Pattern RAM (PRAM) .283

Data Limitations .283

Downloading in List Format .284

Downloading in Block Format .286

Modulating and Activating the Carrier .288

Viewing the PRAM Waveform .288

Save and Recall Instrument State Files. .289

Save and Recall Programming Example .290

Download User Flatness Corrections Using C++ and VISA .302

Data Transfer Troubleshooting .307

User File Download Problems .307

User FIR Filter Coefficient File Download Problems. .309

Direct PRAM Download Problems. .310
vii

Contents
 viii

1 Getting Started

This chapter provides the following major sections:

• “Introduction to Remote Operation” on page 2

• “Using GPIB” on page 7

• “Using LAN” on page 16

• “Using RS-232” on page 28

• “Communicating with the Signal Generator Using a Web Browser” on page 32

• “Error Messages” on page 34
1

Getting Started
Introduction to Remote Operation
Introduction to Remote Operation
ESG signal generators support the following interfaces:

• General Purpose Interface Bus (GPIB)

• Local Area Network (LAN)

• ANSI/EIA232 (RS-232) serial connection

Each of these interfaces, in combination with an I/O library and programming language, can be used to
remotely control your signal generator. Figure 1-1 uses the GPIB as an example of the relationships between
the interface, I/O libraries, programming language, and signal generator.

Figure 1-1 Software/Hardware Layers
2 Chapter 1

Getting Started
Introduction to Remote Operation
Interfaces
GPIB GPIB is used extensively when a dedicated computer is available for remote control of

each instrument or system. Data transfer is fast because the GPIB handles information
in 8-bit bytes. GPIB is physically restricted by the location and distance between the
instrument/system and the computer; cables are limited to an average length of two
meters per device with a total length of 20 meters.

LAN LAN based communication is supported by the signal generator. Data transfer is fast as
the LAN handles packets of data. The distance between a computer and the signal
generator is limited to 100 meters (10Base-T). The following protocols can be used to
communicate with the signal generator over the LAN:

• VXI-11 (Recommended)

• Sockets LAN

• Telephone Network (TELNET)

• File Transfer Protocol (FTP)

RS-232 RS-232 is a common method used to communicate with a single instrument; its primary
use is to control printers and external disk drives, and connect to a modem.
Communication over RS-232 is much slower than with GPIB or LAN because data is
sent and received one bit at a time. It also requires that certain parameters, such as baud
rate, be matched on both the computer and signal generator.

I/O Libraries
An I/O library is a collection of functions used by a programming language to send instrument commands
and receive instrument data. Before you can communicate and control the signal generator, you must have
an IO library installed on your computer. The Agilent IO libraries are included with your signal generator or
Agilent GPIB interface board, or they can be downloaded from the Agilent website: http:\\www.agilent.com.

NOTE Agilent I/O libraries support the VXI-11 standard.

Agilent IO Libraries Suite
The Agilent IO Libraries Suite replaces earlier versions of the Agilent IO Libraries (version M and earlier)
and is supported on all platforms except Windows NT. If you are using the Windows NT platform, refer to
the section on “Windows NT” on page 4.

The Agilent IO Libraries Suite is available on the Automation-Ready CD that is shipped with your signal
generator. The libraries can also be downloaded from the Agilent website: http:\\www.agilent.com. Once the
Chapter 1 3

Getting Started
Introduction to Remote Operation
libraries are loaded, you can use the Agilent Connection Expert, Interactive IO, or VISA Assistant to
configure and communicate with the signal generator over different I/O interfaces. Follow instructions in the
setup wizard to install the libraries on your computer.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services Setup
menu and enable (turn On) the VXI-11 SCPI service.

Refer to the Agilent IO Libraries Suite Help documentation for details on the features available with this
software.

Windows NT
You must use Agilent IO Libraries version M or earlier if you have the Windows NT platform. The libraries
can be downloaded from the Agilent website: http:\\www.agilent.com.

NOTE The following sections are specific to Agilent IO Libraries versions M and earlier and apply
only to the Windows NT platform.

IO Config Program

After installing the Agilent IO Libraries version M or earlier, you can configure the interfaces available on
your computer by using the IO Config program. This program can setup the interfaces that you want to use
to control the signal generator. The following steps set up the interfaces.

NOTE Install GPIB interface boards before running IO Config.

1. Run the IO Config program. The program automatically identifies available interfaces.

2. Click on the interface type you want to configure such GPIB in the Available Interface Types text box.

3. Click the Configure button. Set the Default Protocol to AUTO.

4. Click OK to use the default settings.

5. Click OK to exit the IO Config program.

VISA Assistant

Use can use the VISA Assistant, available with the Agilent IO Libraries versions M and earlier, to send
commands to the signal generator. If the interface you want to use does not appear in the VISA Assistant
then you must manually configure the interface. See the Manual Configuration section below. Refer to the
4 Chapter 1

Getting Started
Introduction to Remote Operation
VISA Assistant Help menu and the Agilent VISA User’s Manual (available on Agilent’s website) for more
information.

1. Run the VISA Assistant program.

2. Click on the interface you want to use for sending commands to the signal generator.

3. Click the Formatted I/O tab.

4. Select SCPI in the Instr. Lang. section.

You can enter SCPI commands in the text box and send the command using the viPrintf button.

Manual Configuration

Perform the following steps to manually configure an interface.

1. Run the IO Config Program.

2. Click on GPIB in the Available Interface Types text box.

3. Click the Configure button. Set the Default Protocol to AUTO and then Click OK to use the default
settings.

4. Click on GPIB0 in the Configured Interfaces text box.

5. Click Edit...

6. Click the Edit VISA Config... button.

7. Click the Add device button.

8. Enter the GPIB address of the signal generator.

9. Click the OK button in this form and all other forms to exit the IO Config program.
Chapter 1 5

Getting Started
Introduction to Remote Operation
Programming Language
The programming language is used along with Standard Commands for Programming Instructions (SCPI)
and I/O library functions to remotely control the signal generator. Common programming languages
include:

• C/C++

• Agilent BASIC

• LabView

• Java

• Visual Basic®

• C#

 Java is a U.S. trademark of Sun Microsystems, Inc.
 Visual Basic is a registered trademark of Microsoft Corporation
6 Chapter 1

Getting Started
Using GPIB
Using GPIB
The GPIB allows instruments to be connected together and controlled by a computer. The GPIB and its
associated interface operations are defined in the ANSI/IEEE Standard 488.1-1987 and ANSI/IEEE
Standard 488.2-1992. See the IEEE website, www.ieee.org, for details on these standards.

1. Installing the GPIB Interface Card
A GPIB interface card must be installed in your computer. Two common GPIB interface cards are the
National Instruments (NI) PCI–GPIB and the Agilent GPIB interface cards. Follow the GPIB interface card
instructions for installing and configuring the card in your computer. The following tables provide
information on some of the interface cards available. See the Agilent website, www.agilent.com for details
on GPIB interface cards that are available.

Table 1-1 Agilent GPIB Interface Card for PC-Based Systems

Interface
Card

Operating
System

I/O
Library

Languages Backplane/B
US

Max I/O
(kB/sec)

Buffering

Agilent
82341C for
ISA bus
computers

Windows
95/98/NT/

2000®

Windows 95, 98, NT, and 2000 are registered trademarks of Microsoft Corporation

VISA /
SICL

C/C++, Visual
Basic, Agilent
VEE, Agilent
Basic for
Windows

ISA/EISA,
16 bit

750 Built-in

Agilent
82341D
Plug&Play
for PC

Windows
95

VISA /
SICL

C/C++, Visual
Basic, Agilent
VEE, Agilent
Basic for
Windows

ISA/EISA,
16 bit

750 Built-in

Agilent
82350A for
PCI bus
computers

Windows
95/98/NT/
2000

VISA /
SICL

C/C++, Visual
Basic, Agilent
VEE, Agilent
Basic for
Windows

PCI 32 bit 750 Built-in
Chapter 1 7

Getting Started
Using GPIB
Table 1-2 NI-GPIB Interface Card for PC-Based Systems

Interface
Card

Operating
System

I/O Library Languages Backplane/B
US

Max I/O

National
Instrument’s
PCI-GPIB

Windows
95/98/2000/
ME/NT

VISA

NI-488.2
C/C++,
Visual BASIC,
LabView

PCI 32 bit 1.5
Mbytes/s

National
Instrument’s
PCI-GPIB+

Windows
NT

VISA
NI-488.2

C/C++,
Visual BASIC,
LabView

PCI 32 bit 1.5
Mbytes/s

NI-488.2 is a trademark of National Instruments Corporation

Table 1-3 Agilent-GPIB Interface Card for HP-UX Workstations

Interface
Card

Operating
System

I/O Library Languages Backplane/B
US

Max I/O
(kB/sec)

Buffering

Agilent
E2071C

HP-UX 9.x,
HP-UX
10.01

VISA/SICL ANSI C,
Agilent VEE,
Agilent BASIC,
HP-UX

EISA 750 Built-in

Agilent
E2071D

HP-UX
10.20

VISA/SICL ANSI C,
Agilent VEE,
Agilent BASIC,
HP-UX

EISA 750 Built-in

Agilent
E2078A

HP-UX
10.20

VISA/SICL ANSI C,
Agilent VEE,
Agilent BASIC,
HP-UX

PCI 750 Built-in
8 Chapter 1

Getting Started
Using GPIB
2. Selecting I/O Libraries for GPIB
The I/O libraries are included with your GPIB interface card. These libraries can also be downloaded from
the National Instruments website or the Agilent website. Refer to “I/O Libraries” on page 3 for information
on I/O libraries. The following is a discussion on these libraries.

VISA VISA is an I/O library used to develop I/O applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used for
programming the signal generator. The NI-VISA and Agilent VISA libraries are
similar implementations of VISA and have the same commands, syntax, and functions.
The differences are in the lower level I/O libraries; NI-488.2 and SICL respectively. It is
best to use the Agilent VISA library with the Agilent GPIB interface card or NI-VISA

with the NI PCI-GPIB interface card.

SICL Agilent SICL can be used without the VISA overlay. The SICL functions can be called
from a program. However, if this method is used, executable programs will not be
portable to other hardware platforms. For example, a program using SICL functions will
not run on a computer with NI libraries (PCI-GPIB interface card).

NI-488.2 NI-488.2 can be used without the VISA overlay. The NI-488.2 functions can be called
from a program. However, if this method is used, executable programs will not be
portable to other hardware platforms. For example, a program using NI-488.2 functions
will not run on a computer with Agilent SICL (Agilent GPIB interface card).

3. Setting Up the GPIB Interface

1. Press Utility > GPIB/RS-232 LAN > GPIB Address.

2. Use the numeric keypad, the arrow keys, or rotate the front panel knob to set the desired address.

The signal generator’s GPIB address is set to 19 at the factory. The acceptable range of addresses is 0
through 30. Once initialized, the state of the GPIB address is not affected by a signal generator preset or
by a power cycle. Other instruments on the GPIB cannot use the same address as the signal generator.

3. Press Enter.

4. Connect a GPIB interface cable between the signal generator and the computer. (Refer to Table 1-4 for
cable part numbers.)

 NI-VISA is a registered trademark of National Instruments Corporation

Table 1-4 Agilent GPIB Cables

Model 10833A 10833B 10833C 10833D 10833F 10833G

Length 1 meter 2 meters 4 meters .5 meter 6 meters 8 meters
Chapter 1 9

Getting Started
Using GPIB
4. Verifying GPIB Functionality
Use the VISA Assistant, available with the Agilent IO Library or the Getting Started Wizard available with
the National Instrument I/O Library, to verify GPIB functionality. These utility programs allow you to
communicate with the signal generator and verify its operation over the GPIB. Refer to the Help menu
available in each utility for information and instructions on running these programs.

If You Have Problems

1. Verify the signal generator’s address matches that declared in the program (example programs in
Chapter 2 use address 19).

2. Remove all other instruments connected to the GPIB and re-run the program.

3. Verify that the GPIB card’s name or id number matches the GPIB name or id number configured for your
PC.

GPIB Interface Terms
An instrument that is part of a GPIB network is categorized as a listener, talker, or controller, depending on
its current function in the network.

listener A listener is a device capable of receiving data or commands from other instruments.
Several instruments in the GPIB network can be listeners simultaneously.

talker A talker is a device capable of transmitting data. To avoid confusion, a GPIB system
allows only one device at a time to be an active talker.

controller A controller, typically a computer, can specify the talker and listeners (including itself)
for an information transfer. Only one device at a time can be an active controller.

GPIB Function Statements
Function statements are the basis for GPIB programming and instrument control. These function statements
combined with SCPI provide management and data communication for the GPIB interface and the signal
generator.

This section describes functions used by different I/O libraries. Refer to the NI-488.2 Function Reference

Manual for Windows, Agilent Standard Instrument Control Library reference manual, and Microsoft®

Visual C++ 6.0 documentation for more information.

 Microsoft is a registered trademark of Microsoft Corporation.
10 Chapter 1

Getting Started
Using GPIB
Abort Function

The Agilent BASIC function ABORT and the other listed I/O library functions terminate listener/talker
activity on the GPIB and prepare the signal generator to receive a new command from the computer.
Typically, this is an initialization command used to place the GPIB in a known starting condition.

Agilent BASIC The ABORT function stops all GPIB activity.

VISA Library In VISA, the viTerminate command requests a VISA session to terminate normal
execution of an asynchronous operation. The parameter list describes the session and
job id.

NI-488.2
Library The NI-488.2 library function aborts any asynchronous read, write, or command

operation that is in progress. The parameter ud is the interface or device descriptor.

SICL The Agilent SICL function aborts any command currently executing with the session
id. This function is supported with C/C++ on Windows 3.1 and Series 700 HP-UX.

Remote Function

The Agilent BASIC function REMOTE and the other listed I/O library functions cause the signal generator to
change from local operation to remote operation. In remote operation, the front panel keys are disabled
except for the Local key and the line power switch. Pressing the Local key on the signal generator front panel
restores manual operation.

Agilent BASIC The REMOTE 719 function disables the front panel operation of all keys with the
exception of the Local key.

VISA Library The VISA library, at this time, does not have a similar command.

Table 1-5

Agilent BASIC VISA NI-488.2 Agilent SICL

10 ABORT 7 viTerminate (parameter
list)

ibstop(int ud) iabort (id)

Table 1-6

Agilent BASIC VISA NI-488.2 Agilent SICL

10 REMOTE 719 N/A EnableRemote (parameter
list)

iremote (id)
Chapter 1 11

Getting Started
Using GPIB
NI-488.2
Library This NI-488.2 library function asserts the Remote Enable (REN) GPIB line. All devices

listed in the parameter list are put into a listen-active state although no indication is
generated by the signal generator. The parameter list describes the interface or device
descriptor.

SICL The Agilent SICL function puts an instrument, identified by the id parameter, into
remote mode and disables the front panel keys. Pressing the Local key on the signal
generator front panel restores manual operation. The parameter id is the session
identifier.

Local Lockout Function

The Agilent BASIC function LOCAL LOCKOUT and the other listed I/O library functions can be used to
disable the front panel keys including the Local key. With the Local key disabled, only the controller (or a
hard reset of the line power switch) can restore local control.

Agilent BASIC The LOCAL LOCKOUT function disables all front-panel signal generator keys. Return to
local control can occur only with a hard on/off, when the LOCAL command is sent or if
the Preset key is pressed.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2
Library The NI-488.2 library function places the instrument described in the parameter list in

remote mode by asserting the Remote Enable (REN) GPIB line. The lockout state is
then set using the Local Lockout (LLO) GPIB message. Local control can be restored
only with the EnableLocal NI-488.2 routine or hard reset. The parameter list describes
the interface or device descriptor.

SICL The Agilent SICL igpibllo function prevents user access to front panel keys operation.
The function puts an instrument, identified by the id parameter, into remote mode with
local lockout. The parameter id is the session identifier and instrument address list.

Table 1-7

Agilent BASIC VISA NI-488.2 Agilent SICL

10 LOCAL LOCKOUT 719 N/A SetRWLS (parameter
list)

igpibllo (id)
12 Chapter 1

Getting Started
Using GPIB
Local Function

The Agilent BASIC function LOCAL and the other listed functions cause the signal generator to return to
local control with a fully enabled front panel.

Agilent BASIC The LOCAL 719 function returns the signal generator to manual operation, allowing
access to the signal generator’s front panel keys.

VISA Library The VISA library, at this time, does not have a similar command.

NI-488.2
Library The NI-488.2 library function places the interface in local mode and allows operation of

the signal generator’s front panel keys. The ud parameter in the parameter list is the
interface or device descriptor.

SICL The Agilent SICL function puts the signal generator into Local operation; enabling front
panel key operation. The id parameter identifies the session.

Clear Function

The Agilent BASIC function CLEAR and the other listed I/O library functions cause the signal generator to
assume a cleared condition.

Agilent BASIC The CLEAR 719 function causes all pending output-parameter operations to be halted,
the parser (interpreter of programming codes) to reset and prepare for a new
programming code, stops any sweep in progress, and continuous sweep to be turned off.

VISA Library The VISA library uses the viClear function. This function performs an IEEE 488.1 clear
of the signal generator.

NI-488.2
Library The NI-488.2 library function sends the GPIB Selected Device Clear (SDC) message to

the device described by ud.

Table 1-8

Agilent BASIC VISA NI-488.2 Agilent SICL

10 LOCAL 719 N/A ibloc (int ud) iloc(id)

Table 1-9

Agilent BASIC VISA NI-488.2 Agilent SICL

10 CLEAR 719 viClear(ViSession
vi)

ibclr(int ud) iclear (id)
Chapter 1 13

Getting Started
Using GPIB
SICL The Agilent SICL function clears a device or interface. The function also discards data
in both the read and write formatted I/O buffers. The id parameter identifies the
session.

Output Function

The Agilent BASIC I/O function OUTPUT and the other listed I/O library functions put the signal generator
into a listen mode and prepare it to receive ASCII data, typically SCPI commands.

Agilent BASIC The function OUTPUT 719 puts the signal generator into remote mode, makes it a
listener, and prepares it to receive data.

VISA Library The VISA library uses the above function and associated parameter list to output data.
This function formats according to the format string and sends data to the device. The
parameter list describes the session id and data to send.

NI-488.2
Library The NI-488.2 library function addresses the GPIB and writes data to the signal

generator. The parameter list includes the instrument address, session id, and the data to
send.

SICL The Agilent SICL function converts data using the format string. The format string
specifies how the argument is converted before it is output. The function sends the
characters in the format string directly to the instrument. The parameter list includes the
instrument address, data buffer to write, and so forth.

Enter Function

The Agilent BASIC function ENTER reads formatted data from the signal generator. Other I/O libraries use
similar functions to read data from the signal generator.

Agilent BASIC The function ENTER 719 puts the signal generator into remote mode, makes it a talker,
and assigns data or status information to a designated variable.

Table 1-10

Agilent BASIC VISA NI-488.2 Agilent SICL

10 OUTPUT 719 viPrintf(parameter
list)

ibwrt(parameter
list)

iprintf (parameter
list)

Table 1-11

Agilent BASIC VISA NI-488.2 Agilent SICL

10 ENTER 719; viScanf (parameter list) ibrd (parameter list) iscanf (parameter list)
14 Chapter 1

Getting Started
Using GPIB
VISA Library The VISA library uses the viScanf function and an associated parameter list to receive
data. This function receives data from the instrument, formats it using the format string,
and stores the data in the argument list. The parameter list includes the session id and
string argument.

NI-488.2
Library The NI-488.2 library function addresses the GPIB, reads data bytes from the signal

generator, and stores the data into a specified buffer. The parameter list includes the
instrument address and session id.

SICL The Agilent SICL function reads formatted data, converts it, and stores the results into
the argument list. The conversion is done using conversion rules for the format string.
The parameter list includes the instrument address, formatted data to read, and so forth.
Chapter 1 15

Getting Started
Using LAN
Using LAN
The signal generator can be remotely programmed via a 10Base-T LAN interface and LAN-connected
computer using one of several LAN interface protocols. The LAN allows instruments to be connected
together and controlled by a LAN-based computer. LAN and its associated interface operations are defined
in the IEEE 802.2 standard. See the IEEE website, www.ieee.org, for details on these standards.

The signal generator supports the following LAN interface protocols:

• VXI-11

• Sockets LAN

• Telephone Network (TELNET)

• File Transfer Protocol (FTP)

VXI-11 and sockets LAN are used for general programming using the LAN interface, TELNET is used for
interactive, one command at a time instrument control, and FTP is for file transfer.

1. Selecting I/O Libraries for LAN
The TELNET and FTP protocols do not require I/O libraries to be installed on your computer. However, to
write programs to control your signal generator, an I/O library must be installed on your computer and the
computer configured for instrument control using the LAN interface.

The Agilent IO libraries Suite is available on the Automation-Ready CD which was shipped with your signal
generator. The libraries can also be downloaded from the Agilent website. The following is a discussion on
these libraries.

Agilent VISA VISA is an I/O library used to develop I/O applications and instrument drivers that
comply with industry standards. Use the Agilent VISA library for programming the
signal generator over the LAN interface.

SICL Agilent SICL is a lower level library that is installed along with Agilent VISA.

2. Setting Up the LAN Interface
For LAN operation, the signal generator must be connected to the LAN, and an IP address must be assigned
to the signal generator either manually or by using DHCP client service. Your system administrator can tell
you which method to use.

NOTE Verify that the signal generator is connected to the LAN using a 10Base-T LAN cable.
16 Chapter 1

Getting Started
Using LAN
Manual Configuration

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

2. Press Hostname.

NOTE The Hostname softkey is only available when LAN Config Manual DHCP is set to Manual.

3. Use the labeled text softkeys, or numeric keypad, or both to enter the desired hostname.

To erase the current hostname, press Editing Keys > Clear Text.

4. Press Enter.

5. Press LAN Config Manual DHCP to Manual.

6. Press IP Address and enter a desired address.

Use the left and right arrow keys to move the cursor. Use the up and down arrow keys, front panel knob,
or numeric keypad to enter an IP address. To erase the current IP address, press the Clear Text softkey.

NOTE To remotely access the signal generator from a different LAN subnet, you must also enter
the subnet mask and default gateway. See your system administrator to obtain the
appropriate values.

7. Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot) softkey.

This action assigns a hostname and IP address (as well as a gateway and subnet mask, if these have been
configured) to the signal generator. The hostname, IP address, gateway and subnet mask are not affected
by an instrument preset or by a power cycle.

DHCP Configuration

1. Press Utility > GPIB/RS-232 LAN > LAN Setup.

NOTE If the DHCP server uses dynamic DNS to link the hostname with the assigned IP address,
the hostname may be used in place of the IP address. Otherwise, the hostname is not usable
and you may skip steps 2 through 4.

2. Press Hostname.

NOTE The Hostname softkey is only available when LAN Config Manual DHCP is set to Manual.
Chapter 1 17

Getting Started
Using LAN
3. Use the labeled text softkeys, or numeric keypad, or both to enter the desired hostname.

To erase the current hostname, press Editing Keys > Clear Text.

4. Press Enter.

5. Press LAN Config Manual DHCP to DHCP.

6. Press the Proceed With Reconfiguration softkey and then the Confirm Change (Instrument will Reboot) softkey.

This action configures the signal generator as a DHCP client. In DHCP mode, the signal generator will
request a new IP address from the DHCP server upon rebooting. You can return to the LAN Setup menu
after rebooting to determine the assigned IP address.

3. Verifying LAN Functionality
Verify the communications link between the computer and the signal generator remote file server using the
ping utility. Compare your ping response to those described in Table 1-12.

From a UNIX ® workstation, type:

 ping <hostname or IP address> 64 10

where <hostname or IP address> is your instrument’s name or IP address, 64 is the packet size, and
10 is the number of packets transmitted. Type man ping at the UNIX prompt for details on the ping
command.

From the MS-DOS® Command Prompt or Windows environment, type:

 ping -n 10 <hostname or IP address>

where <hostname or IP address> is your instrument’s name or IP address and 10 is the number of
echo requests. Type ping at the command prompt for details on the ping command.

NOTE In DHCP mode, if the DHCP server uses dynamic DNS to link the hostname with the
assigned IP address, the hostname may be used in place of the IP address. Otherwise, the
hostname is not usable and you must use the IP address to communicate with the signal
generator over the LAN.

 UNIX is a registered trademark of the Open Group
 MS-DOS is a registered trademark of Microsoft Corporation
18 Chapter 1

Getting Started
Using LAN
Table 1-12 Ping Responses

Normal Response for
UNIX

A normal response to the ping command will be a total of 9 or 10 packets
received with a minimal average round-trip time. The minimal average will be
different from network to network. LAN traffic will cause the round-trip time
to vary widely.

Normal Response for
DOS or Windows

A normal response to the ping command will be a total of 9 or 10 packets
received if 10 echo requests were specified.

Error Messages If error messages appear, then check the command syntax before continuing
with troubleshooting. If the syntax is correct, resolve the error messages using
your network documentation or by consulting your network administrator.

If an unknown host error message appears, try using the IP address instead of
the hostname. Also, verify that the host name and IP address for the signal
generator have been registered by your IT administrator.

Check that the hostname and IP address are correctly entered in the node
names database. To do this, enter the nslookup <hostname> command
from the command prompt.

No Response If there is no response from a ping, no packets were received. Check that the
typed address or hostname matches the IP address or hostname assigned to the
signal generator in the System Utility > GPIB/RS-232 LAN > LAN Setup menu.

Ping each node along the route between your workstation and the signal
generator, starting with your workstation. If a node doesn’t respond, contact
your IT administrator.

If the signal generator still does not respond to ping, you should suspect a
hardware problem.

Intermittent Response If you received 1 to 8 packets back, there maybe a problem with the network.
In networks with switches and bridges, the first few pings may be lost until the
these devices ‘learn’ the location of hosts. Also, because the number of
packets received depends on your network traffic and integrity, the number
might be different for your network. Problems of this nature are best resolved
by your IT department.
Chapter 1 19

Getting Started
Using LAN
Using VXI-11
The signal generator supports the LAN interface protocol described in the VXI-11 standard. VXI-11 is an
instrument control protocol based on Open Network Computing/Remote Procedure Call (ONC/RPC)
interfaces running over TCP/IP. It is intended to provide GBIB capabilities such as SRQ (Service Request),
status byte reading, and DCAS (Device Clear State) over a LAN interface. This protocol is a good choice for
migrating from GPIB to LAN as it has full Agilent VISA/SICL support. See the VXI website, www.vsi.org,
for more information and details on the specification.

Configuring for VXI-11

The Agilent I/O library has a program, I/O Config, that is used to setup the computer/signal generator
interface for the VXI-11 protocol. Download the latest version of the Agilent I/O library from the Agilent
website. Refer to the Agilent I/O library user manual, documentation, and Help menu for information on
running the I/O Config program and configuring the VXI-11 interface.

Use the I/O Config program to configure the LAN client. Once the computer is configured for a LAN client,
you can use the VXI-11 protocol and the VISA library to send SCPI commands to the signal generator over
the LAN interface. Example programs for this protocol are included in “LAN Programming Examples” on
page 80 of this programming guide.

NOTE For Agilent I/O library version J.01.0100, the “Identify devices at run-time” check box must
be unchecked. Refer to Figure 1-2.
20 Chapter 1

Getting Started
Using LAN
Figure 1-2 Show Devices Form

Using Sockets LAN
Sockets LAN is a method used to communicate with the signal generator over the LAN interface using the
Transmission Control Protocol/ Internet Protocol (TCP/IP). A socket is a fundamental technology used for
computer networking and allows applications to communicate using standard mechanisms built into
network hardware and operating systems. The method accesses a port on the signal generator from which
bidirectional communication with a network computer can be established.

Sockets LAN can be described as an internet address that combines Internet Protocol (IP) with a device port
number and represents a single connection between two pieces of software. The socket can be accessed
using code libraries packaged with the computer operating system. Two common versions of socket libraries
are the Berkeley Sockets Library for UNIX systems and Winsock for Microsoft operating systems.

Your signal generator implements a sockets Applications Programming Interface (API) that is compatible
with Berkeley sockets, for UNIX systems, and Winsock for Microsoft systems. The signal generator is also
compatible with other standard sockets APIs. The signal generator can be controlled using SCPI commands
that are output to a socket connection established in your program.
Chapter 1 21

Getting Started
Using LAN
Before you can use sockets LAN, you must select the signal generator’s sockets port number to use:

• Standard mode. Available on port 5025. Use this port for simple programming.

• TELNET mode. The telnet SCPI service is available on port 5023.

NOTE The signal generator will accept references to telnet SCPI service at port 7777 and sockets
SCPI service at port 7778.

An example using sockets LAN is given in Chapter 2 of this programming guide.

Using Telnet LAN
Telnet provides a means of communicating with the signal generator over the LAN. The Telnet client, run on
a LAN connected computer, will create a login session on the signal generator. A connection, established
between computer and signal generator, generates a user interface display screen with SCPI> prompts on the
command line.

Using the Telnet protocol to send commands to the signal generator is similar to communicating with the
signal generator over GPIB. You establish a connection with the signal generator and then send or receive
information using SCPI commands. Communication is interactive: one command at a time.

NOTE The Windows 2000 ®operating system uses a command prompt style interface for the

Telnet client. Refer to the Figure 1-5 on page 25 for an example of this interface.

Using Telnet and MS-DOS Command Prompt

1. On your PC, click Start > Programs > Command Prompt.

2. At the command prompt, type in telnet.

3. Press the Enter key. The Telnet display screen will be displayed.

4. Click on the Connect menu then select Remote System. A connection form (Figure 1-3) is displayed.

Connect Form

 Windows 2000 is a registered trademark of Microsoft Corporation.
22 Chapter 1

Getting Started
Using LAN
Figure 1-3

5. Enter the hostname, port number, and TermType then click Connect.

• Host Name−IP address or hostname
• Port−5023
• Term Type−vt100

6. At the SCPI> prompt, enter SCPI commands. Refer to Figure 1-4 on page 24.

7. To signal device clear, press Ctrl-C on your keyboard.

8. Select Exit from the Connect menu and type exit at the command prompt to end the Telnet session.

Using Telnet On a PC With a Host/Port Setting Menu GUI

1. On your PC, click Start > Run.

2. Type telnet then click the OK button. The Telnet connection screen will be displayed.

3. Click on the Connect menu then select Remote System. A connection form is displayed. See Figure 1-3.

4. Enter the hostname, port number, and TermType then click Connect.

• Host Name−signal generator’s IP address or hostname
• Port−5023
• Term Type−vt100

5. At the SCPI> prompt, enter SCPI commands. Refer to Figure 1-4 on page 24.

6. To signal device clear, press Ctrl-C.

7. Select Exit from the Connect menu to end the Telnet session.
Chapter 1 23

Getting Started
Using LAN
Figure 1-4 Telnet Window

Using Telnet On Windows 2000

1. On your PC, click Start > Run.

2. Type telnet in the run text box, then click the OK button. The Telnet connection screen will be
displayed. See Figure 1-5 on page 25.

3. Type open at the prompt and then press the Enter key. The prompt will change to (to).

4. At the (to) prompt, enter the signal generator’s IP address followed by a space and 5023,which is the
Telnet port associated with the signal generator.

5. At the SCPI> prompt, enter SCPI commands. Refer to commands shown in Figure 1-4 on page 24.

6. To escape from the SCPI> session type Ctrl-].

7. Type quit at the prompt to end the Telnet session.
24 Chapter 1

Getting Started
Using LAN
Figure 1-5 Telnet 2000 Window

The Standard UNIX Telnet Command

Synopsis

telnet [host [port]]

Description

This command is used to communicate with another host using the Telnet protocol. When the command
telnet is invoked with host or port arguments, a connection is opened to the host, and input is sent from
the user to the host.

Options and Parameters

The command telnet operates in character-at-a-time or line-by-line mode. In line-by-line mode, typed text
is echoed to the screen. When the line is completed (by pressing the Enter key), the text line is sent to host.
In character-at-a-time mode, text is echoed to the screen and sent to host as it is typed. At the UNIX
prompt, type man telnet to view the options and parameters available with the telnet command.

NOTE If your Telnet connection is in line-by-line mode, there is no local echo. This means you
cannot see the characters you are typing until you press the Enter key. To remedy this,
change your Telnet connection to character-by-character mode. Escape out of Telnet, and at
the telnet> prompt, type mode char. If this does not work, consult your Telnet
program's documentation.
Chapter 1 25

Getting Started
Using LAN
Unix Telnet Example

To connect to the instrument with host name myInstrument and port number 7778, enter the following
command on the command line: telnet myInstrument 5023

When you connect to the signal generator, the UNIX window will display a welcome message and a SCPI
command prompt. The instrument is now ready to accept your SCPI commands. As you type SCPI
commands, query results appear on the next line. When you are done, break the Telnet connection using an
escape character. For example, Ctrl-],where the control key and the] are pressed at the same time. The
following example shows Telnet commands:

$ telnet myinstrument 5023

Trying....

Connected to signal generator

Escape character is ‘^]’.

Agilent Technologies, E44xx SN-US00000001

Firmware:

Hostname: your instrument

IP :xxx.xx.xxx.xxx

SCPI>

Using FTP
FTP allows users to transfer files between the signal generator and any computer connected to the LAN. For
example, you can use FTP to download instrument screen images to a computer. When logged onto the
signal generator with the FTP command, the signal generator’s file structure can be accessed. Figure 1-6
shows the FTP interface and lists the directories in the signal generator’s user level directory.

NOTE File access is limited to the signal generator’s /user directory.
26 Chapter 1

Getting Started
Using LAN
Figure 1-6 FTP Screen

The following steps outline a sample FTP session from the MS-DOS Command Prompt:

1. On the PC click Start > Programs > Command Prompt.

2. At the command prompt enter:

ftp < IP address > or < hostname >

3. At the user name prompt, press enter.

4. At the password prompt, press enter.

You are now in the signal generator’s user directory. Typing help at the command prompt will show you
the FTP commands that are available on your system.

5. Type quit or bye to end your FTP session.

6. Type exit to end the command prompt session.
Chapter 1 27

Getting Started
Using RS-232
Using RS-232
The RS-232 serial interface can be used to communicate with the signal generator. The RS-232 connection
is standard on most PCs and can be connected to the signal generator’s rear-panel connector using the cable
described in Table 1-13 on page 29. Many functions provided by GPIB, with the exception of indefinite
blocks, serial polling, GET, non-SCPI remote languages, and remote mode are available using the RS-232
interface.

The serial port sends and receives data one bit at a time, therefore RS-232 communication is slow. The data
transmitted and received is usually in ASCII format with SCPI commands being sent to the signal generator
and ASCII data returned.

1. Selecting I/O Libraries for RS-232
The I/O libraries can be downloaded from the National Instrument website, www.ni.com, or Agilent’s
website, www.agilent.com. The following is a discussion on these libraries.

Agilent BASIC The Agilent BASIC language has an extensive I/O library that can be used to control the
signal generator over the RS-232 interface. This library has many low level functions
that can be used in BASIC applications to control the signal generator over the RS-232
interface.

VISA VISA is an I/O library used to develop I/O applications and instrument drivers that
comply with industry standards. It is recommended that the VISA library be used for
programming the signal generator. The NI-VISA and Agilent VISA libraries are similar
implementations of VISA and have the same commands, syntax, and functions. The
differences are in the lower level I/O libraries used to communicate over the RS-232;
NI-488.2 and SICL respectively.

NI-488.2 NI-488.2 I/O libraries can be used to develop applications for the RS-232 interface. See
National Instrument’s website for information on NI-488.2.

SICL Agilent SICL can be used to develop applications for the RS-232 interface. See
Agilent’s website for information on SICL.
28 Chapter 1

Getting Started
Using RS-232
2. Setting Up the RS-232 Interface

1. Press Utility > GPIB/RS-232 LAN> RS-232 Setup > RS-232 Baud Rate > 9600

Use baud rates 57600 or lower only. Select the signal generator’s baud rate to match the baud rate of
your computer or UNIX workstation or adjust the baud rate settings on your computer to match the baud
rate setting of the signal generator.

NOTE The default baud rate for VISA is 9600. This baud rate can be changed with the
“VI_ATTR_ASRL_BAUD” VISA attribute.

2. Press Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Echo Off On until Off is highlighted.

Set the signal generator’s RS-232 echo. Selecting On echoes or returns characters sent to the signal
generator and prints them to the display.

3. Connect an RS-232 cable from the computer’s serial connector to the signal generator’s AXILLARY
INTERFACE connector. Refer to Table 1-13 for RS-232 cable information.

NOTE Any 9 pin (male) to 9 pin (female) straight-through cable that directly wires pins 2, 3, 5, 7,
and 8 may be used.

Table 1-13 RS-232 Serial Interface Cable

Quantity Description Agilent Part Number

1 Serial RS-232 cable 9-pin (male) to 9-pin
(female)

8120-6188
Chapter 1 29

Getting Started
Using RS-232
3. Verifying RS-232 Functionality
You can use the HyperTerminal program available on your computer to verify the RS-232 interface
functionality. To run the HyperTerminal program, connect the RS-232 cable between the computer and the
signal generator and perform the following steps:

1. On the PC click Start > Programs > Accessories > HyperTerminal.

2. Select HyperTerminal.

3. Enter a name for the session in the text box and select an icon.

4. Select COM1 (COM2 can be used if COM1 is unavailable).

5. In the COM1 (or COM2, if selected) properties, set the following parameters:

• Bits per second: 9600 must match signal generator’s baud rate; On the signal generator Select
Utility > GPIB/RS-232 LAN > RS-232 Setup > RS-232 Baud Rate > 9600.

• Data bits: 8

• Parity: None

• Stop bits: 1

• Flow Control: None

NOTE Flow control, via the RTS line, is driven by the signal generator. For the purposes of this
verification, the controller (PC) can ignore this if flow control is set to None. However, to
control the signal generator programmatically or download files to the signal generator, you
must enable RTS-CTS (hardware) flow control on the controller. Note that only the RTS
line is currently used.

6. Go to the HyperTerminal window and select File > Properties

7. Go to Settings > Emulation and select VT100.

8. Leave the Backscroll buffer lines set to the default value.

9. Go to Settings > ASCII Setup.

10. Check the first two boxes and leave the other boxes as default values.

Once the connection is established, enter the SCPI command *IDN? followed by <Ctrl j> in the
HyperTerminal window. The <Ctrl j> is the new line character (on the keyboard press the Cntrl key and
the j key simultaneously).

The signal generator should return a string similar to the following, depending on model:

Agilent Technologies <instrument model name and number>, US40000001,C.02.00
30 Chapter 1

Getting Started
Using RS-232
Character Format Parameters
The signal generator uses the following character format parameters when communicating via RS-232:

• Character Length: Eight data bits are used for each character, excluding start, stop, and parity bits.

• Parity Enable: Parity is disabled (absent) for each character.

• Stop Bits: One stop bit is included with each character.

If You Have Problems

1. Verify that the baud rate, parity, and stop bits are the same for the computer and signal generator.

2. Verify that the RS-232 cable is identical to the cable specified in Table 1-13.

3. Verify that the application is using the correct computer COM port and that the RS-232 cable is properly
connected to that port.

4. Verify that the controller’s flow control is set to RTS-CTS.
Chapter 1 31

Getting Started
Communicating with the Signal Generator Using a Web Browser
Communicating with the Signal Generator Using a Web Browser
The Web Server uses a client/server model
where the client is the web browser on your
PC or workstation and the server is the signal
generator. When you enable the Web Server,
you can access a web page that resides on the
signal generator.

The web-enabled signal generator web page,
shown at right and page 33, provides general
information on the signal generator, FTP
access to files stored on the signal generator,
and a means to control the instrument using
either a remote front-panel interface or SCPI
commands. The web page also has links to
Agilent’s products, manuals, support, and
website. For additional information on
memory catalog access (file storing), refer to
the User’s Guide and “Waveform Memory”
on page 184 and for FTP, see “Using FTP” on
page 26 and “FTP Procedures” on page 191.

The Web Server service is compatible with
the latest version of the Microsoft© Internet

Explorer web browser.

1. If it is not already enabled, turn on the
Web server:

a. Press Utility > GPIB/RS-232 LAN >
LAN Services Setup.

b. If necessary, press > Web Server On >
Proceed With Reconfiguration >
Confirm Change.

2. Launch the PC or workstation web
browser.

 Microsoft is a registered trademark of Microsoft Corp.

101.101.01.101

The results of a SCPI command display on a separate web page titled,
“SCPI Command Processed.” You can continue using this web page to enter
SCPI commands or you can return to the front panel web page. If the web
page does not update, use the Web browser Refresh function.

To operate the signal generator, either click keys, or
enter SCPI commands and click SEND.
32 Chapter 1

Getting Started
Communicating with the Signal Generator Using a Web Browser
3. In the web browser address field, enter the signal generator’s IP (internet protocol) address. For example,
http://101.101.01.101 (where 101.101.01.101 is the signal generator’s IP address).

The IP address can change depending on the LAN configuration (see “Using LAN” on page 16).

4. On the computer’s keyboard, press Enter. The web browser displays the signal generator’s homepage.

5. Click the Signal Generator Web Control menu button on the left of the page. The front panel web page
displays.

To control the signal generator, either
click the front panel keys or enter SCPI
commands.

The FTP Access button opens a window to show the folders
containing the signal generator’s memory catalog files.

101.101.01.101
Chapter 1 33

Getting Started
Error Messages
Error Messages
If an error condition occurs in the signal generator, it is reported to both the SCPI (remote interface) error
queue and the front panel display error queue. These two queues are viewed and managed separately; for
information on the front panel display error queue, refer to the User’s Guide.

When accessing error messages using the SCPI (remote interface) error queue, the error numbers and the
<error_description> portions of the error query response are displayed on the host terminal.

Error Message File
A complete list of error messages is provided in the file errormesages.pdf, on the CD-ROM supplied with
your instrument. In the error message list, an explanation is generally included with each error to further
clarify its meaning. The error messages are listed numerically. In cases where there are multiple listings for
the same error number, the messages are in alphabetical order.

Characteristic SCPI Remote Interface Error Queue

Capacity (#errors) 30

Overflow Handling
Linear, first-in/first-out.
Replaces newest error with: -350, Queue overflow

Viewing Entries Use SCPI query SYSTem:ERRor[:NEXT]?

Clearing the Queue
Power up
Send a *CLS command
Read last item in the queue

Unresolved Errors

Errors that must be resolved. For example, unlock.

Re-reported after queue is cleared.

No Errors
When the queue is empty (every error in the queue has been read, or the queue is cleared),
the following message appears in the queue:
+0, "No error"
34 Chapter 1

Getting Started
Error Messages
Error Message Types
Events do not generate more than one type of error. For example, an event that generates a query error will
not generate a device-specific, execution, or command error.

Query Errors (–499 to –400) indicate that the instrument’s output queue control has detected a problem
with the message exchange protocol described in IEEE 488.2, Chapter 6. Errors in this class set the query
error bit (bit 2) in the event status register (IEEE 488.2, section 11.5.1). These errors correspond to message
exchange protocol errors described in IEEE 488.2, 6.5. In this case:

• Either an attempt is being made to read data from the output queue when no output is either present or
pending, or

• data in the output queue has been lost.

Device Specific Errors (–399 to –300, 201 to 703, and 800 to 810) indicate that a device operation did not
properly complete, possibly due to an abnormal hardware or firmware condition. These codes are also used
for self-test response errors. Errors in this class set the device-specific error bit (bit 3) in the event status
register (IEEE 488.2, section 11.5.1).

The <error_message> string for a positive error is not defined by SCPI. A positive error indicates that the
instrument detected an error within the GPIB system, within the instrument’s firmware or hardware, during
the transfer of block data, or during calibration.

Execution Errors (–299 to –200) indicate that an error has been detected by the instrument’s execution
control block. Errors in this class set the execution error bit (bit 4) in the event status register (IEEE 488.2,
section 11.5.1). In this case:

• Either a <PROGRAM DATA> element following a header was evaluated by the device as outside of its
legal input range or is otherwise inconsistent with the device’s capabilities, or

• a valid program message could not be properly executed due to some device condition.

Execution errors are reported after rounding and expression evaluation operations are completed. Rounding
a numeric data element, for example, is not reported as an execution error.

Command Errors (–199 to –100) indicate that the instrument’s parser detected an IEEE 488.2 syntax error.
Errors in this class set the command error bit (bit 5) in the event status register (IEEE 488.2, section 11.5.1).
In this case:

• Either an IEEE 488.2 syntax error has been detected by the parser (a control-to-device message was
received that is in violation of the IEEE 488.2 standard. Possible violations include a data element that
violates device listening formats or whose type is unacceptable to the device.), or

• an unrecognized header was received. These include incorrect device-specific headers and incorrect or
unimplemented IEEE 488.2 common commands.
Chapter 1 35

Getting Started
Error Messages
36 Chapter 1

2 Programming Examples

This chapter provides the following major sections:

• “Using the Programming Examples” on page 38

• “GPIB Programming Examples” on page 42

• “LAN Programming Examples” on page 80

• “RS-232 Programming Examples” on page 118
37

Programming Examples
Using the Programming Examples
Using the Programming Examples
The programming examples for remote control of the signal generator use the GPIB, LAN, and RS-232
interfaces and demonstrate instrument control using different I/O libraries and programming languages.
Many of the example programs in this chapter are interactive; the user will be prompted to perform certain
actions or verify signal generator operation or functionality. Example programs are written in the following
languages:

• Agilent BASIC

• C/C++

• Java

• PERL

• Microsoft Visual Basic 6.0

• C#

See Chapter 1 of this programming guide for information on interfaces, I/O libraries, and programming
languages.

The example programs are also available on the ESG Documentation CD-ROM, allowing you to cut and
paste the examples into a text editor.

NOTE The example programs set the signal generator into remote mode; front panel keys, except
the Local key, are disabled. Press the Local key to revert to manual operation.

NOTE To update the signal generator’s front panel display so that it reflects remote command
setups, enable the remote display: press Utility > Display > Update in Remote Off On softkey
until On is highlighted or send the SCPI command :DISPlay:REMote ON. For faster test
execution, disable front panel updates.

Programming Examples Development Environment
The C/C++ examples in this guide were written using an IBM-compatible personal computer (PC) with the
following configuration:

• Pentium® processor

 Pentium is a U.S. registered trademark of Intel Corporation
38 Chapter 2

Programming Examples
Using the Programming Examples
• Windows NT 4.0 operating system

• C/C++ programming language with the Microsoft Visual C++ 6.0 IDE

• National Instruments PCI- GPIB interface card or Agilent GPIB interface card

• National Instruments VISA Library or Agilent VISA library

• COM1 or COM2 serial port available

• LAN interface card

The Agilent BASIC examples were run on a UNIX 700 Series workstation.

Running C/C++ Programming Examples
To run the example programs written in C/C++ you must include the required files in the Microsoft Visual
C++ 6.0 project.

If you are using the VISA library do the following:

• add the visa32.lib file to the Resource Files

• add the visa.h file to the Header Files

If you are using the NI-488.2 library do the following:

• add the GPIB-32.OBJ file to the Resource Files

• add the windows.h file to the Header Files

• add the Deci-32.h file to the Header Files

Refer to the National Instrument website for information on the NI-488.2 library and file requirements. For
information on the VISA library see the Agilent website or National Instrument’s website.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services Setup
menu and enable the VXI-11 SCPI service.
Chapter 2 39

Programming Examples
Using the Programming Examples
Running Visual Basic 6.0® Programming Examples
To run the example programs written in Visual Basic 6.0 you must include references to the IO Libraries.
For more information on VISA and IO libraries, refer to the Agilent VISA User’s Manual, available on
Agilent’s website: http://www.agilent.com. In the Visual Basic IDE (Integrated Development Environment)
go to Project–References and place a check mark on the following references:

• Agilent VISA COM Resource Manager 1.0

• VISA COM 1.0 Type Library

NOTE If you want to use VISA functions such as viWrite, then you must add the visa32.bas
module to your Visual Basic project.

The signal generator’s VXI-11 SCPI service must be on before you can run the Download Visual Basic 6.0
programming example.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services Setup
menu and enable (turn On) the VXI-11 SCPI service.

You can start a new Standard EXE project and add the required references. Once the required references are
include, you can copy the example programs into your project and add a command button to Form1 that
will call the program.

The example Visual Basic 6.0 programs are available on the ESG Documentation CD-ROM, enabling you to
cut and paste the examples into your project.

Running C# Programming Examples

To run the example program written in C# you must have the .NET framework installed on your computer.
You must also have the Agilent IO Libraries installed on your computer. The .NET framework can be
downloaded from the Microsoft website.

IMPORTANT The VXI-11 SCPI service must be enabled before you can communicate with the signal
generator over the LAN interface. Go to the Utility > GPIB/RS-232 LAN > LAN Services Setup
menu and enable (turn On) the VXI-11 SCPI service.

 Visual Basic is a registered trademark of Microsoft corporation
40 Chapter 2

Programming Examples
Using the Programming Examples
1. Copy the State_File.cs file in the examples directory to the .NET installation directory where the csc.exe
file is located. The example C# program is available on the ESG Documentation CD-ROM

2. Run the MS-DOS Command Prompt program. Change the directory so that the command prompt
program is in the same directory as the csc.exe and State_File programs.

3. On the command line, enter csc State_File.cs.

4. Follow the prompts in the program to save and recall signal generator instrument states.
Chapter 2 41

Programming Examples
GPIB Programming Examples
GPIB Programming Examples
• “Interface Check using Agilent BASIC” on page 43

• “Interface Check Using NI-488.2 and C++” on page 44

• “Interface Check using VISA and C” on page 45

• “Local Lockout Using Agilent BASIC” on page 46

• “Local Lockout Using NI-488.2 and C++” on page 48

• “Queries Using Agilent BASIC” on page 49

• “Queries Using NI-488.2 and C++” on page 51

• “Queries Using VISA and C” on page 54

• “Generating a CW Signal Using VISA and C” on page 56

• “Generating an Externally Applied AC-Coupled FM Signal Using VISA and C” on page 59

• “Generating an Internal AC-Coupled FM Signal Using VISA and C” on page 61

• “Generating a Step-Swept Signal Using VISA and C” on page 63

• “Saving and Recalling States Using VISA and C” on page 67

• “Reading the Data Questionable Status Register Using VISA and C” on page 70

• “Reading the Service Request Interrupt (SRQ) Using VISA and C” on page 75

Before Using the Examples
If the Agilent GPIB interface card is used, then the Agilent VISA library should be installed along with
Agilent SICL. If the National Instruments PCI-GPIB interface card is used, the NI-VISA library along with
the NI-488.2 library should be installed. Refer to “2. Selecting I/O Libraries for GPIB” on page 9 and the
documentation for your GPIB interface card for details.

NOTE Agilent BASIC addresses the signal generator at 719. The GPIB card is addressed at 7 and
the signal generator at 19. The GPIB address designator for other libraries is typically
GPIB0 or GPIB1.
42 Chapter 2

Programming Examples
GPIB Programming Examples
Interface Check using Agilent BASIC
This simple program causes the signal generator to perform an instrument reset. The SCPI command *RST
places the signal generator into a pre-defined state and the remote annunciator (R) appears on the front panel
display.

The following program example is available on the ESG Documentation CD-ROM as basicex1.txt.

10 !**

20 !

30 ! PROGRAM NAME: basicex1.txt

40 !

50 ! PROGRAM DESCRIPTION: This program verifies that the GPIB connections and

60 ! interface are functional.

70 !

80 ! Connect a controller to the signal generator using a GPIB cable.

90 !

100 !

110 ! CLEAR and RESET the controller and type in the following commands and then

120 ! RUN the program:

130 !

140 !**

150 !

160 Sig_gen=719 ! Declares a variable to hold the signal generator's address

170 LOCAL Sig_gen ! Places the signal generator into Local mode

180 CLEAR Sig_gen ! Clears any pending data I/O and resets the parser

190 REMOTE 719 ! Puts the signal generator into remote mode

200 CLEAR SCREEN ! Clears the controllers display

210 REMOTE 719

220 OUTPUT Sig_gen;"*RST" ! Places the signal generator into a defined state

230 PRINT "The signal generator should now be in REMOTE."

240 PRINT

250 PRINT "Verify that the remote [R] annunciator is on. Press the `Local' key, "

260 PRINT "on the front panel to return the signal generator to local control."

270 PRINT
Chapter 2 43

Programming Examples
GPIB Programming Examples
280 PRINT "Press RUN to start again."

290 END ! Program ends

Interface Check Using NI-488.2 and C++
This example uses the NI-488.2 library to verify that the GPIB connections and interface are functional.
Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file.

The following program example is available on the ESG Documentation CD-ROM as niex1.cpp.

// ***

//

// PROGRAM NAME: niex1.cpp

//

// PROGRAM DESCRIPTION: This program verifies that the GPIB connections and

// interface are functional.

//

// Connect a GPIB cable from the PC GPIB card to the signal generator

// Enter the following code into the source .cpp file and execute the program

//

// ***

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle

Addr4882_t Address[31]; // Declares an array of type Addr4882_t

int main(void)

{

44 Chapter 2

Programming Examples
GPIB Programming Examples
 int sig; // Declares a device descriptor variable

 sig = ibdev(0, 19, 0, 13, 1, 0); // Aquires a device descriptor

 ibclr(sig); // Sends device clear message to signal generator

 ibwrt(sig, "*RST", 4); // Places the signal generator into a defined state

 // Print data to the output window

 cout << "The signal generator should now be in REMOTE. The remote indicator"<<endl;

 cout <<"annunciator R should appear on the signal generator display"<<endl;

 return 0;

}

Interface Check using VISA and C
This program uses VISA library functions and the C language to communicate with the signal generator.
The program verifies that the GPIB connections and interface are functional. Launch Microsoft Visual C++
6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex1.cpp.

//**

// PROGRAM NAME:visaex1.cpp

//

// PROGRAM DESCRIPTION:This example program verifies that the GPIB connections and

// and interface are functional.

// Turn signal generator power off then on and then run the program

//

//**

#include <visa.h>

#include <stdio.h>

#include "StdAfx.h"

#include <stdlib.h>
Chapter 2 45

Programming Examples
GPIB Programming Examples
void main ()

{

ViSession defaultRM, vi; // Declares a variable of type ViSession

 // for instrument communication

ViStatus viStatus = 0;

 // Opens a session to the GPIB device

 // at address 19

viStatus=viOpenDefaultRM(&defaultRM);

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

viPrintf(vi, "*RST\n"); // initializes signal generator

 // prints to the output window

printf("The signal generator should now be in REMOTE. The remote
indicator\n");

printf("annunciator R should appear on the signal generator display\n");

printf("\n");

viClose(vi); // closes session

viClose(defaultRM); // closes default session

}

Local Lockout Using Agilent BASIC
This example demonstrates the Local Lockout function. Local Lockout disables the front panel signal
generator keys.

The following program example is available on the ESG Documentation CD-ROM as basicex2.txt.

10 !***

20 !

30 ! PROGRAM NAME: basicex2.txt
46 Chapter 2

Programming Examples
GPIB Programming Examples
40 !

50 ! PROGRAM DESCRIPTION: In REMOTE mode, access to the signal generators

60 ! functional front panel keys are disabled except for

70 ! the Local and Contrast keys. The LOCAL LOCKOUT

80 ! command will disable the Local key.

90 ! The LOCAL command, executed from the controller, is then

100 ! the only way to return the signal generator to front panel,

110 ! Local, control.

120 !***

130 Sig_gen=719 ! Declares a variable to hold signal generator address

140 CLEAR Sig_gen ! Resets signal generator parser and clears any output

150 LOCAL Sig_gen ! Places the signal generator in local mode

160 REMOTE Sig_gen ! Places the signal generator in remote mode

170 CLEAR SCREEN ! Clears the controllers display

180 OUTPUT Sig_gen;"*RST" ! Places the signal generator in a defined state

190 ! The following print statements are user prompts

200 PRINT "The signal generator should now be in remote."

210 PRINT "Verify that the 'R' and 'L' annunciators are visable"

220 PRINT ".......... Press Continue"

230 PAUSE

240 LOCAL LOCKOUT 7 ! Puts the signal generator in LOCAL LOCKOUT mode

250 PRINT ! Prints user prompt messages

260 PRINT "Signal generator should now be in LOCAL LOCKOUT mode."

270 PRINT

280 PRINT "Verify that all keys including `Local' (except Contrast keys) have no effect."

290 PRINT

300 PRINT ".......... Press Continue"

310 PAUSE

320 PRINT

330 LOCAL 7 ! Returns signal generator to Local control

340 ! The following print statements are user prompts

350 PRINT "Signal generator should now be in Local mode."
Chapter 2 47

Programming Examples
GPIB Programming Examples
360 PRINT

370 PRINT "Verify that the signal generator's front-panel keyboard is functional."

380 PRINT

390 PRINT "To re-start this program press RUN."

400 END

Local Lockout Using NI-488.2 and C++
This example uses the NI-488.2 library to set the signal generator local lockout mode. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as niex2.cpp.

// **

// PROGRAM NAME: niex2.cpp

//

// PROGRAM DESCRIPTION: This program will place the signal generator into

// LOCAL LOCKOUT mode. All front panel keys, except the Contrast key, will be disabled.

// The local command, 'ibloc(sig)' executed via program code, is the only way to

// return the signal generator to front panel, Local, control.

// **

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle

Addr4882_t Address[31]; // Declares a variable of type Addr4882_t

int main()

{

int sig; // Declares variable to hold interface descriptor

sig = ibdev(0, 19, 0, 13, 1, 0); // Opens and initialize a device descriptor
48 Chapter 2

Programming Examples
GPIB Programming Examples
ibclr(sig); // Sends GPIB Selected Device Clear (SDC) message

ibwrt(sig, "*RST", 4); // Places signal generator in a defined state

cout << "The signal generator should now be in REMOTE. The remote mode R "<<endl;

cout <<"annunciator should appear on the signal generator display."<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n');

SendIFC(GPIB0); // Resets the GPIB interface

Address[0]=19; // Signal generator's address

Address[1]=NOADDR; // Signifies end element in array. Defined in
 // DECL-32.H

SetRWLS(GPIB0, Address); // Places device in Remote with Lockout State.

cout<< "The signal generator should now be in LOCAL LOCKOUT. Verify that all
keys"<<endl;

cout<< "including the 'Local' key are disabled (Contrast keys are not
affected)"<<endl;

cout <<"Press Enter to continue"<<endl;

cin.ignore(10000,'\n');

ibloc(sig); // Returns signal generator to local control

cout<<endl;

cout <<"The signal generator should now be in local mode\n";

return 0;}

}

Queries Using Agilent BASIC
This example demonstrates signal generator query commands. The signal generator can be queried for
conditions and setup parameters. Query commands are identified by the question mark as in the identify
command *IDN?

The following program example is available on the ESG Documentation CD-ROM as basicex3.txt.

10 !**

20 !

30 ! PROGRAM NAME: basicex3.txt

40 !

50 ! PROGRAM DESCRIPTION: In this example, query commands are used with response
Chapter 2 49

Programming Examples
GPIB Programming Examples
60 ! data formats.

70 !

80 ! CLEAR and RESET the controller and RUN the following program:

90 !

100 !**

110 !

120 DIM A$[10],C$[100],D$[10] ! Declares variables to hold string response data

130 INTEGER B ! Declares variable to hold integer response data

140 Sig_gen=719 ! Declares variable to hold signal generator address

150 LOCAL Sig_gen ! Puts signal generator in Local mode

160 CLEAR Sig_gen ! Resets parser and clears any pending output

170 CLEAR SCREEN ! Clears the controller’s display

180 OUTPUT Sig_gen;"*RST" ! Puts signal generator into a defined state

190 OUTPUT Sig_gen;"FREQ:CW?" ! Querys the signal generator CW frequency setting

200 ENTER Sig_gen;F ! Enter the CW frequency setting

210 ! Print frequency setting to the controller display

220 PRINT "Present source CW frequency is: ";F/1.E+6;"MHz"

230 PRINT

240 OUTPUT Sig_gen;"POW:AMPL?" ! Querys the signal generator power level

250 ENTER Sig_gen;W ! Enter the power level

260 ! Print power level to the controller display

270 PRINT "Current power setting is: ";W;"dBM"

280 PRINT

290 OUTPUT Sig_gen;"FREQ:MODE?" ! Querys the signal generator for frequency mode

300 ENTER Sig_gen;A$! Enter in the mode: CW, Fixed or List

310 ! Print frequency mode to the controller display

320 PRINT "Source's frequency mode is: ";A$

330 PRINT

340 OUTPUT Sig_gen;"OUTP OFF" ! Turns signal generator RF state off

350 OUTPUT Sig_gen;"OUTP?" ! Querys the operating state of the signal generator

360 ENTER Sig_gen;B ! Enter in the state (0 for off)

370 ! Print the on/off state of the signal generator to the controller display
50 Chapter 2

Programming Examples
GPIB Programming Examples
380 IF B>0 THEN

390 PRINT "Signal Generator output is: on"

400 ELSE

410 PRINT "Signal Generator output is: off"

420 END IF

430 OUTPUT Sig_gen;"*IDN?" ! Querys for signal generator ID

440 ENTER Sig_gen;C$! Enter in the signal generator ID

450 ! Print the signal generator ID to the controller display

460 PRINT

470 PRINT "This signal generator is a ";C$

480 PRINT

490 ! The next command is a query for the signal generator's GPIB address

500 OUTPUT Sig_gen;"SYST:COMM:GPIB:ADDR?"

510 ENTER Sig_gen;D$! Enter in the signal generator's address

520 ! Print the signal generator's GPIB address to the controllers display

530 PRINT "The GPIB address is ";D$

540 PRINT

550 ! Print user prompts to the controller's display

560 PRINT "The signal generator is now under local control"

570 PRINT "or Press RUN to start again."

580 END

Queries Using NI-488.2 and C++
This example uses the NI-488.2 library to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as niex3.cpp.

//***

// PROGRAM NAME: niex3.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates the use of query commands.

//

// The signal generator can be queried for conditions and instrument states.
Chapter 2 51

Programming Examples
GPIB Programming Examples
// These commands are of the type "*IDN?" where the question mark indicates

// a query.

//

//***

#include "stdafx.h"

#include <iostream>

#include "windows.h"

#include "Decl-32.h"

using namespace std;

int GPIB0= 0; // Board handle

Addr4882_t Address[31]; // Declare a variable of type Addr4882_t

int main()

{

int sig; // Declares variable to hold interface descriptor

int num;

char rdVal[100]; // Declares variable to read instrument responses

sig = ibdev(0, 19, 0, 13, 1, 0); // Open and initialize a device descriptor

ibloc(sig); // Places the signal generator in local mode

ibclr(sig); // Sends Selected Device Clear(SDC) message

ibwrt(sig, "*RST", 4); // Places signal generator in a defined state

ibwrt(sig, ":FREQuency:CW?",14); // Querys the CW frequency

ibrd(sig, rdVal,100); // Reads in the response into rdVal

rdVal[ibcntl] = '\0'; // Null character indicating end of array

cout<<"Source CW frequency is "<<rdVal; // Print frequency of signal generator

cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n');

ibwrt(sig, "POW:AMPL?",10); // Querys the signal generator

ibrd(sig, rdVal,100); // Reads the signal generator power level

rdVal[ibcntl] = '\0'; // Null character indicating end of array
52 Chapter 2

Programming Examples
GPIB Programming Examples
 // Prints signal generator power level

cout<<"Source power (dBm) is : "<<rdVal;

cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n');

ibwrt(sig, ":FREQ:MODE?",11); // Querys source frequency mode

ibrd(sig, rdVal,100); // Enters in the source frequency mode

rdVal[ibcntl] = '\0'; // Null character indicating end of array

cout<<"Source frequency mode is "<<rdVal; // Print source frequency mode

cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n');

ibwrt(sig, "OUTP OFF",12); // Turns off RF source

ibwrt(sig, "OUTP?",5); // Querys the on/off state of the instrument

ibrd(sig,rdVal,2); // Enter in the source state

rdVal[ibcntl] = '\0';

num = (int (rdVal[0]) -('0'));

if (num > 0){

cout<<"Source RF state is : On"<<endl;

}else{

cout<<"Source RF state is : Off"<<endl;}

cout<<endl;

ibwrt(sig, "*IDN?",5); // Querys the instrument ID

ibrd(sig, rdVal,100); // Reads the source ID

rdVal[ibcntl] = '\0'; // Null character indicating end of array

cout<<"Source ID is : "<<rdVal; // Prints the source ID

cout<<"Press any key to continue"<<endl;

cin.ignore(10000,'\n');

 ibwrt(sig, "SYST:COMM:GPIB:ADDR?",20); //Querys source address

ibrd(sig, rdVal,100); // Reads the source address

rdVal[ibcntl] = '\0'; // Null character indicates end of array

 // Prints the signal generator address

cout<<"Source GPIB address is : "<<rdVal;

cout<<endl;
Chapter 2 53

Programming Examples
GPIB Programming Examples
cout<<"Press the 'Local' key to return the signal generator to LOCAL control”<<endl;
cout<<endl;

return 0;

}

Queries Using VISA and C
This example uses VISA library functions to query different instrument states and conditions. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex3.cpp.

//**

// PROGRAM FILE NAME:visaex3.cpp

//

// PROGRAM DESCRIPTION:This example demonstrates the use of query commands. The signal

// generator can be queried for conditions and instrument states. These commands are of

// the type "*IDN?"; the question mark indicates a query.

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <conio.h>

#include <stdlib.h>

using namespace std;

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

char rdBuffer [256]; // Declares variable to hold string data
54 Chapter 2

Programming Examples
GPIB Programming Examples
int num; // Declares variable to hold integer data

 // Initialize the VISA system

viStatus=viOpenDefaultRM(&defaultRM);

 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

 printf("Check instruments and connections\n");

 printf("\n");

 exit(0);}

viPrintf(vi, "*RST\n"); // Resets signal generator

viPrintf(vi, "FREQ:CW?\n"); // Querys the CW frequency

viScanf(vi, "%t", rdBuffer); // Reads response into rdBuffer

 // Prints the source frequency

printf("Source CW frequency is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to the display

getch();

viPrintf(vi, "POW:AMPL?\n"); // Querys the power level

viScanf(vi, "%t", rdBuffer); // Reads the response into rdBuffer

 // Prints the source power level

printf("Source power (dBm) is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to the display

getch();

viPrintf(vi, "FREQ:MODE?\n"); // Querys the frequency mode

viScanf(vi, "%t", rdBuffer); // Reads the response into rdBuffer

 // Prints the source freq mode

printf("Source frequency mode is : %s\n", rdBuffer);

printf("Press any key to continue\n");

printf("\n"); // Prints new line character to the display

getch();
Chapter 2 55

Programming Examples
GPIB Programming Examples
viPrintf(vi, "OUTP OFF\n"); // Turns source RF state off

viPrintf(vi, "OUTP?\n"); // Querys the signal generator's RF state

viScanf(vi, "%1i", &num); // Reads the response (integer value)

 // Prints the on/off RF state

 if (num > 0) {

printf("Source RF state is : on\n");

}else{

printf("Source RF state is : off\n");

}

 // Close the sessions

viClose(vi);

viClose(defaultRM);

}

Generating a CW Signal Using VISA and C
This example uses VISA library functions to control the signal generator. The signal generator is set for a
CW frequency of 500 kHz and a power level of −2.3 dBm. Launch
Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex4.cpp.

//**

// PROGRAM FILE NAME: visaex4.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates query commands. The signal generator

// frequency and power level.

// The RF state of the signal generator is turn on and then the state is queried. The

// response will indicate that the RF state is on. The RF state is then turned off and

// queried. The response should indicate that the RF state is off. The query results are

// printed to the to the display window.

//

//**

#include "StdAfx.h"
56 Chapter 2

Programming Examples
GPIB Programming Examples
#include <visa.h>

#include <iostream>

#include <stdlib.h>

#include <conio.h>

void main ()

{

 ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

char rdBuffer [256]; // Declare variable to hold string data

int num; // Declare variable to hold integer data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA system

 // Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

viPrintf(vi, "*RST\n"); // Reset the signal generator

viPrintf(vi, "FREQ 500 kHz\n"); // Set the source CW frequency for 500 kHz

viPrintf(vi, "FREQ:CW?\n"); // Query the CW frequency

viScanf(vi, "%t", rdBuffer); // Read signal generator response

printf("Source CW frequency is : %s\n", rdBuffer); // Print the frequency

viPrintf(vi, "POW:AMPL -2.3 dBm\n"); // Set the power level to -2.3 dBm

viPrintf(vi, "POW:AMPL?\n"); // Query the power level

viScanf(vi, "%t", rdBuffer); // Read the response into rdBuffer

printf("Source power (dBm) is : %s\n", rdBuffer); // Print the power level
Chapter 2 57

Programming Examples
GPIB Programming Examples
viPrintf(vi, "OUTP:STAT ON\n"); // Turn source RF state on

viPrintf(vi, "OUTP?\n"); // Query the signal generator's RF state

viScanf(vi, "%1i", &num); // Read the response (integer value)

 // Print the on/off RF state

if (num > 0) {

printf("Source RF state is : on\n");

}else{

printf("Source RF state is : off\n");

}

printf("\n");

printf("Verify RF state then press continue\n");

printf("\n");

getch();

viClear(vi);

viPrintf(vi,"OUTP:STAT OFF\n"); // Turn source RF state off

viPrintf(vi, "OUTP?\n"); // Query the signal generator's RF state

viScanf(vi, "%1i", &num); // Read the response

 // Print the on/off RF state

 if (num > 0) {

printf("Source RF state is now: on\n");

}else{

printf("Source RF state is now: off\n");

}

 // Close the sessions

printf("\n");

viClear(vi);

viClose(vi);

viClose(defaultRM);

}

58 Chapter 2

Programming Examples
GPIB Programming Examples
Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
In this example, the VISA library is used to generate an ac-coupled FM signal at a carrier frequency of
700 MHz, a power level of −2.5 dBm, and a deviation of 20 kHz. Before running the program:

• Connect the output of a modulating signal source to the signal generator’s EXT 2 input connector.

• Set the modulation signal source for the desired FM characteristics.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex5.cpp.

//**

// PROGRAM FILE NAME:visaex5.cpp

//

// PROGRAM DESCRIPTION:This example sets the signal generator FM source to External 2,

// coupling to AC, deviation to 20 kHZ, carrier frequency to 700 MHz and the power level

// to -2.5 dBm. The RF state is set to on.

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <stdlib.h>

#include <conio.h>

void main ()

{

 ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

 // Initialize VISA session

viStatus=viOpenDefaultRM(&defaultRM);

 // open session to gpib device at address 19
Chapter 2 59

Programming Examples
GPIB Programming Examples
viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("Example program to set up the signal generator\n");

printf("for an AC-coupled FM signal\n");

printf("Press any key to continue\n");

printf("\n");

getch();

printf("\n");

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "FM:SOUR EXT2\n"); // Sets EXT 2 source for FM

viPrintf(vi, "FM:EXT2:COUP AC\n"); // Sets FM path 2 coupling to AC

viPrintf(vi, "FM:DEV 20 kHz\n"); // Sets FM path 2 deviation to 20 kHz

viPrintf(vi, "FREQ 700 MHz\n"); // Sets carrier frequency to 700 MHz

viPrintf(vi, "POW:AMPL -2.5 dBm\n"); // Sets the power level to -2.5 dBm

viPrintf(vi, "FM:STAT ON\n"); // Turns on frequency modulation

viPrintf(vi, "OUTP:STAT ON\n"); // Turns on RF output

 // Print user information

printf("Power level : -2.5 dBm\n");

printf("FM state : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 700 MHZ\n");

printf("Deviation : 20 kHZ\n");

printf("EXT2 and AC coupling are selected\n");

printf("\n"); // Prints a carrage return

 // Close the sessions

viClose(vi);

viClose(defaultRM);
60 Chapter 2

Programming Examples
GPIB Programming Examples
}

Generating an Internal AC-Coupled FM Signal Using VISA and C
In this example the VISA library is used to generate an ac-coupled internal FM signal at a carrier frequency
of 900 MHz and a power level of −15 dBm. The FM rate will be 5 kHz and the peak deviation will be 100
kHz. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp
source file.

The following program example is available on the ESG Documentation CD-ROM as visaex6.cpp.

//**

// PROGRAM FILE NAME:visaex6.cpp

//

// PROGRAM DESCRIPION:This example generates an AC-coupled internal FM signal at a 900

// MHz carrier frequency and a power level of -15 dBm. The FM rate is 5 kHz and the peak

// deviation 100 kHz

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <stdlib.h>

#include <conio.h>

void main ()

{

ViSession defaultRM, vi; // Declares variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0; // Declares a variable of type ViStatus

 // for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

 // open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);
Chapter 2 61

Programming Examples
GPIB Programming Examples
if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("Example program to set up the signal generator\n");

printf("for an AC-coupled FM signal\n");

printf("\n");

printf("Press any key to continue\n");

getch();

viClear(vi); // Clears the signal generator

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "FM2:INT:FREQ 5 kHz\n"); // Sets EXT 2 source for FM

viPrintf(vi, "FM2:DEV 100 kHz\n"); // Sets FM path 2 coupling to AC

viPrintf(vi, "FREQ 900 MHz\n"); // Sets carrier frequency to 700 MHz

viPrintf(vi, "POW -15 dBm\n"); // Sets the power level to -2.3 dBm

viPrintf(vi, "FM2:STAT ON\n"); // Turns on frequency modulation

viPrintf(vi, "OUTP:STAT ON\n"); // Turns on RF output

printf("\n"); // Prints a carriage return

 // Print user information

printf("Power level : -15 dBm\n");

printf("FM state : on\n");

printf("RF output : on\n");

printf("Carrier Frequency : 900 MHZ\n");

printf("Deviation : 100 kHZ\n");

printf("Internal modulation : 5 kHz\n");

printf("\n"); // Print a carrage return

// Close the sessions

viClose(vi);

viClose(defaultRM);

}

62 Chapter 2

Programming Examples
GPIB Programming Examples
Generating a Step-Swept Signal Using VISA and C
In this example the VISA library is used to set the signal generator for a continuous step sweep on a defined
set of points from 500 MHz to 800 MHz. The number of steps is set for 10 and the dwell time at each step is
set to 500 ms. The signal generator will then be set to local mode which allows the user to make adjustments
from the front panel. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code
into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex7.cpp.

//**

// PROGRAM FILE NAME:visaex7.cpp

//

// PROGRAM DESCRIPTION:This example will program the signal generator to perform a step

// sweep from 500-800 MHz with a .5 sec dwell at each frequency step.

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

void main ()

{

ViSession defaultRM, vi;// Declares variables of type ViSession

// vi establishes instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

 // for GPIB verifications

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

// Open session to GPIB device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){// If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");
Chapter 2 63

Programming Examples
GPIB Programming Examples
printf("\n");

exit(0);}

viClear(vi); // Clears the signal generator

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "*CLS\n"); // Clears the status byte register

viPrintf(vi, "FREQ:MODE LIST\n"); // Sets the sig gen freq mode to list

viPrintf(vi, "LIST:TYPE STEP\n"); // Sets sig gen LIST type to step

viPrintf(vi, "FREQ:STAR 500 MHz\n"); // Sets start frequency

viPrintf(vi, "FREQ:STOP 800 MHz\n"); // Sets stop frequency

viPrintf(vi, "SWE:POIN 10\n"); // Sets number of steps (30 mHz/step)

viPrintf(vi, "SWE:DWEL .5 S\n"); // Sets dwell time to 500 ms/step

viPrintf(vi, "POW:AMPL -5 dBm\n"); // Sets the power level for -5 dBm

viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output on

viPrintf(vi, "INIT:CONT ON\n"); // Begins the step sweep operation

 // Print user information

printf("The signal generator is in step sweep mode. The frequency range
is\n");

printf("500 to 800 mHz. There is a .5 sec dwell time at each 30 mHz
step.\n");

printf("\n"); // Prints a carriage return/line feed

 viPrintf(vi, "OUTP:STAT OFF\n"); // Turns the RF output off

printf("Press the front panel Local key to return the\n");

printf("signal generoator to manual operation.\n");

 // Closes the sessions

printf("\n");

viClose(vi);

viClose(defaultRM);

}

64 Chapter 2

Programming Examples
GPIB Programming Examples
Generating a Swept Signal Using VISA and Visual C++
This example sets up the signal generator for a frequency sweep from 1 to 2 GHz with 101 points and a .01
second dwell period for each point. A loop is used to generator 5 sweep operations. The signal generator
triggers each sweep with the :INIT command. There is a wait introduced in the loop to allow the signal
generator to complete all operations such as set up and retrace before the next sweep is generated.

The following program example is available on the ESG Documentation CD-ROM as visaex11.cpp.

//**

// PROGRAM FILE NAME: visaex11.cpp

//

// PROGRAM DESCRIPTION: This program sets up the signal generator to

// sweep from 1-2 GHz. A loop and counter are used to generate 5 sweeps.

// Each sweep consists of 101 points with a .01 second dwell at each point.

//

// The program uses a Sleep function to allow the signal generator to

// complete it's sweep operation before the INIT command is sent.

// The Sleep function is available with the windows.h header file which is

// included in the project.

//

// NOTE: Change the TCPIP0 address in the instOpenString declaration to

// match the IP address of your signal generator.

//

//**

#include "stdafx.h"

#include "visa.h"

#include <iostream>

#include <windows.h>

void main ()

 {

 ViStatus stat;

ViSession defaultRM,inst;
Chapter 2 65

Programming Examples
GPIB Programming Examples
 int npoints = 101;

 double dwell = 0.01;

int intCounter=5;

char* instOpenString = "TCPIP0::141.121.93.101::INSTR";

stat = viOpenDefaultRM(&defaultRM);

stat = viOpen(defaultRM,instOpenString,VI_NULL,VI_NULL, &inst);

 // preset to start clean

stat = viPrintf(inst, "*RST\n");

 // set power level for -10dBm

stat = viPrintf(inst, "POW -10DBM\n");

 // set the start and stop frequency for the sweep

 stat = viPrintf(inst, "FREQ:START 1GHZ\n");

 stat = viPrintf(inst, "FREQ:STOP 2GHZ\n");

 // setup dwell per point

 stat = viPrintf(inst, "SWEEP:DWELL %e\n", dwell);

 // setup number of points

 stat = viPrintf(inst, "SWEEP:POINTS %d\n", npoints);

 // set interface timeout to double the expected sweep time

 // sweep takes (~15ms + dwell) per point * number of points

 // the timeout should not be shorter then the sweep, set it

 // longer

 long timeoutMS = long(2*npoints*(.015+dwell)*1000);

 // set the VISA timeout

 stat = viSetAttribute(inst, VI_ATTR_TMO_VALUE, timeoutMS);

 // set continuous trigger mode off

 stat = viPrintf(inst, "INIT:CONT OFF\n");
66 Chapter 2

Programming Examples
GPIB Programming Examples
 // turn list sweep on

 stat = viPrintf(inst, "FREQ:MODE LIST\n");

 int sweepNo = 0;

 while(intCounter>0)

 {

 // start the sweep (initialize)

 stat = viPrintf(inst, "INIT\n");

 printf("Sweep %d started\n",++sweepNo);

 // wait for the sweep completion with *OPC?

 int res ;

 stat = viPrintf(inst, "*OPC?\n");

 stat = viScanf(inst, "%d", &res);

 // handle possible errors here (most likely a timeout)

 // err_handler(inst, stat);

 puts("Sweep ended");

 // delay before sending next INIT since instrument

 // may not be ready to receive it yet

 Sleep(15);

 intCounter = intCounter-1;

 }

 printf("End of Program\n\n");

 }

Saving and Recalling States Using VISA and C
In this example, instrument settings are saved in the signal generator’s save register. These settings can then
be recalled separately; either from the keyboard or from the signal generator’s front panel. Launch Microsoft
Visual C++ 6.0, add the required files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as visaex8.cpp.
Chapter 2 67

Programming Examples
GPIB Programming Examples
//**

// PROGRAM FILE NAME:visaex8.cpp

//

// PROGRAM DESCRIPTION:In this example, instrument settings are saved in the signal

// generator's registers and then recalled.

// Instrument settings can be recalled from the keyboard or, when the signal generator

// is put into Local control, from the front panel.

// This program will initialize the signal generator for an instrument state, store the

// state to register #1. An *RST command will reset the signal generator and a *RCL

// command will return it to the stored state. Following this remote operation the user

// will be instructed to place the signal generator in Local mode.

//

//**

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <conio.h>

void main ()

{

 ViSession defaultRM, vi;// Declares variables of type ViSession

// for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

 // for GPIB verifications

long lngDone = 0; // Operation complete flag

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

// Open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){// If problems, then prompt user

printf("Could not open ViSession!\n");
68 Chapter 2

Programming Examples
GPIB Programming Examples
printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viClear(vi); // Clears the signal generator

viPrintf(vi, "*CLS\n"); // Resets the status byte register

 // Print user information

printf("Programming example using the *SAV,*RCL SCPI commands\n");

printf("used to save and recall an instrument's state\n");

printf("\n");

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "FREQ 5 MHz\n"); // Sets sig gen frequency

viPrintf(vi, "POW:ALC OFF\n"); // Turns ALC Off

viPrintf(vi, "POW:AMPL -3.2 dBm\n"); // Sets power for -3.2 dBm

viPrintf(vi, "OUTP:STAT ON\n"); // Turns RF output On

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

viPrintf(vi, "*SAV 1\n"); // Saves sig gen state to register #1

 // Print user information

printf("The current signal generator operating state will be saved\n");

printf("to Register #1. Observe the state then press Enter\n");

printf("\n"); // Prints new line character

getch(); // Wait for user input

lngDone=0; // Resets the operation complete flag

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

 // Print user infromation

printf("The instrument is now in it's Reset operating state. Press the\n");

printf("Enter key to return the signal generator to the Register #1
Chapter 2 69

Programming Examples
GPIB Programming Examples
state\n");

printf("\n"); // Prints new line character

getch(); // Waits for user input

lngDone=0; // Reset the operation complete flag

viPrintf(vi, "*RCL 1\n"); // Recalls stored register #1 state

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

 // Print user information

printf("The signal generator has been returned to it's Register #1
state\n");

printf("Press Enter to continue\n");

printf("\n"); // Prints new line character

getch(); // Waits for user input

lngDone=0; // Reset the operation complete flag

viPrintf(vi, "*RST\n"); // Resets the signal generator

viPrintf(vi, "*OPC?\n"); // Checks for operation complete

while (!lngDone)

 viScanf (vi ,"%d",&lngDone); // Waits for setup to complete

 // Print user information

printf("Press Local on instrument front panel to return to manual mode\n");

printf("\n"); // Prints new line character

 // Close the sessions

viClose(vi);

viClose(defaultRM);

}

Reading the Data Questionable Status Register Using VISA and C
In this example, the signal generator’s data questionable status register is read. You will be asked to set up
the signal generator for error generating conditions. The data questionable status register will be read and the
program will notify the user of the error condition that the setup caused. Follow the user prompts presented
when the program runs. Launch Microsoft Visual C++ 6.0, add the required files, and enter the following
code into your .cpp source file.
70 Chapter 2

Programming Examples
GPIB Programming Examples
The following program example is available on the ESG Documentation CD-ROM as visaex9.cpp.

//***

// PROGRAM NAME:visaex9.cpp

//

// PROGRAM DESCRIPTION:In this example, the data questionable status register is read.

// The data questionable status register is enabled to read an unleveled condition.

// The signal generator is then set up for an unleveled condition and the data

// questionable status register read. The results are then displayed to the user.

// The status questionable register is then setup to monitor a modulation error condition.

// The signal generator is set up for a modulation error condition and the data

// questionable status register is read.

// The results are displayed to the active window.

//

//***

#include <visa.h>

#include "StdAfx.h"

#include <iostream>

#include <conio.h>

void main ()

{

ViSession defaultRM, vi;// Declares a variables of type ViSession

 // for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

// for GPIB verifications

int num=0;// Declares a variable for switch statements

char rdBuffer[256]={0}; // Declare a variable for response data

viStatus=viOpenDefaultRM(&defaultRM); // Initialize VISA session

 // Open session to GPIB device at address 19
Chapter 2 71

Programming Examples
GPIB Programming Examples
viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

printf("\n");

viClear(vi);// Clears the signal generator

// Prints user information

printf("Programming example to demonstrate reading the signal generator's
Status Byte\n");

printf("\n");

printf("Manually set up the sig gen for an unleveled output condition:\n");

printf("* Set signal generator output amplitude to +20 dBm\n");

printf("* Set frequency to maximum value\n");

printf("* Turn On signal generator's RF Output\n");

printf("* Check signal generator's display for the UNLEVEL annuniator\n");

printf("\n");

printf("Press Enter when ready\n");

printf("\n");

getch(); // Waits for keyboard user input

viPrintf(vi, "STAT:QUES:POW:ENAB 2\n"); // Enables the Data Questionable

 // Power Condition Register Bits

// Bits '0' and '1'

viPrintf(vi, "STAT:QUES:POW:COND?\n"); // Querys the register for any

// set bits

viScanf(vi, "%s", rdBuffer); // Reads the decimal sum of the

 // set bits

num=(int (rdBuffer[1]) -('0')); // Converts string data to

 // numeric
72 Chapter 2

Programming Examples
GPIB Programming Examples
switch (num) // Based on the decimal value

{

case 1:

printf("Signal Generator Reverse Power Protection
Tripped\n");

printf("/n");

break;

case 2:

printf("Signal Generator Power is Unleveled\n");

printf("\n");

break;

default:

printf("No Power Unleveled condition detected\n");

printf("\n");

}

viClear(vi); // Clears the signal generator

 // Prints user information

printf("--\n");

printf("\n");

printf("Manually set up the sig gen for an unleveled output condition:\n");

printf("\n");

printf("* Select AM modulation\n");

printf("* Select AM Source Ext 1 and Ext Coupling AC\n");

printf("* Turn On the modulation.\n");

printf("* Do not connect any source to the input\n");

printf("* Check signal generator's display for the EXT1 LO annunciator\n");

printf("\n");

printf("Press Enter when ready\n");

printf("\n");

getch(); // Waits for keyboard user input

viPrintf(vi, "STAT:QUES:MOD:ENAB 16\n"); // Enables the Data Questionable

 // Modulation Condition Register
Chapter 2 73

Programming Examples
GPIB Programming Examples
// bits '0','1','2','3' and '4'

 viPrintf(vi, "STAT:QUES:MOD:COND?\n"); // Querys the register for any

// set bits

 viScanf(vi, "%s", rdBuffer); // Reads the decimal sum of the

// set bits

num=(int (rdBuffer[1]) -('0')); // Converts string data to numeric

switch (num) // Based on the decimal value

{

case 1:

printf("Signal Generator Modulation 1 Undermod\n");

printf("\n");

break;

case 2:

printf("Signal Generator Modulation 1 Overmod\n");

printf("\n");

break;

case 4:

printf("Signal Generator Modulation 2 Undermod\n");

printf("\n");

break;

case 8:

printf("Signal Generator Modulation 2 Overmod\n");

printf("\n");

break;

case 16:

printf("Signal Generator Modulation Uncalibrated\n");

printf("\n");

break;

default:

printf("No Problems with Modulation\n");

printf("\n");
74 Chapter 2

Programming Examples
GPIB Programming Examples
}

// Close the sessions

viClose(vi);

viClose(defaultRM);

}

Reading the Service Request Interrupt (SRQ) Using VISA and C
This example demonstrates use of the Service Request (SRQ) interrupt. By using the SRQ, the computer can
attend to other tasks while the signal generator is busy performing a function or operation. When the signal
generator finishes it’s operation, or detects a failure, then a Service Request can be generated. The computer
will respond to the SRQ and, depending on the code, can perform some other operation or notify the user of
failures or other conditions.

This program sets up a step sweep function for the signal generator and, while the operation is in progress,
prints out a series of asterisks. When the step sweep operation is complete, an SRQ is generated and the
printing ceases.

Launch Microsoft Visual C++ 6.0, add the required files, and enter the following code into your .cpp source
file.

The following program example is available on the ESG Documentation CD-ROM as visaex10.cpp.

//**

//

// PROGRAM FILE NAME:visaex10.cpp

//

// PROGRAM DESCRIPTION: This example demonstrates the use of a Service Request (SRQ)

// interrupt. The program sets up conditions to enable the SRQ and then sets the signal

// generator for a step mode sweep. The program will enter a printing loop which prints

// an * character and ends when the sweep has completed and an SRQ received.

//

//**

#include "visa.h"
Chapter 2 75

Programming Examples
GPIB Programming Examples
#include <stdio.h>

#include "StdAfx.h"

#include "windows.h"

#include <conio.h>

#define MAX_CNT 1024

int sweep=1; // End of sweeep flag

/* Prototypes */

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType, ViEvent event, ViAddr
addr);

int main ()

{

ViSession defaultRM, vi;// Declares variables of type ViSession

// for instrument communication

ViStatus viStatus = 0;// Declares a variable of type ViStatus

 // for GPIB verifications

char rdBuffer[MAX_CNT];// Declare a block of memory data

viStatus=viOpenDefaultRM(&defaultRM);// Initialize VISA session

if(viStatus < VI_SUCCESS){// If problems, then prompt user

printf("ERROR initializing VISA... exiting\n");

printf("\n");

return -1;}

 // Open session to gpib device at address 19

viStatus=viOpen(defaultRM, "GPIB::19::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){ // If problems then prompt user

printf("ERROR: Could not open communication with
instrument\n");

printf("\n");
76 Chapter 2

Programming Examples
GPIB Programming Examples
return -1;}

viClear(vi); // Clears the signal generator

viPrintf(vi, "*RST\n"); // Resets signal generator

 // Print program header and information

printf("** End of Sweep Service Request **\n");

printf("\n");

printf("The signal generator will be set up for a step sweep mode
operation.\n");

printf("An ’*’ will be printed while the instrument is sweeping. The end of
 \n");

printf("sweep will be indicated by an SRQ on the GPIB and the program will
end.\n");

printf("\n");

printf("Press Enter to continue\n");

printf("\n");

getch();

viPrintf(vi, "*CLS\n");// Clears signal generator status byte

viPrintf(vi, "STAT:OPER:NTR 8\n");// Sets the Operation Status Group // Negative
Transition Filter to indicate a // negative transition in Bit 3 (Sweeping)

// which will set a corresponding event in // the Operation Event Register. This occurs
// at the end of a sweep.

viPrintf(vi, "STAT:OPER:PTR 0\n");// Sets the Operation Status Group // Positive
Transition Filter so that no

// positive transition on Bit 3 affects the // Operation Event Register. The positive //
transition occurs at the start of a sweep.

viPrintf(vi, "STAT:OPER:ENAB 8\n");// Enables Operation Status Event Bit 3 // to report
the event to Status Byte // Register Summary Bit 7.

viPrintf(vi, "*SRE 128\n");// Enables Status Byte Register Summary Bit 7

// The next line of code indicates the // function to call on an event

viStatus = viInstallHandler(vi, VI_EVENT_SERVICE_REQ, interupt, rdBuffer);

// The next line of code enables the // detection of an event

viStatus = viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);
Chapter 2 77

Programming Examples
GPIB Programming Examples
viPrintf(vi, "FREQ:MODE LIST\n");// Sets frequency mode to list

viPrintf(vi, "LIST:TYPE STEP\n");// Sets sweep to step

viPrintf(vi, "LIST:TRIG:SOUR IMM\n");// Immediately trigger the sweep

viPrintf(vi, "LIST:MODE AUTO\n");// Sets mode for the list sweep

viPrintf(vi, "FREQ:STAR 40 MHZ\n"); // Start frequency set to 40 MHz

viPrintf(vi, "FREQ:STOP 900 MHZ\n");// Stop frequency set to 900 MHz

viPrintf(vi, "SWE:POIN 25\n");// Set number of points for the step sweep

viPrintf(vi, "SWE:DWEL .5 S\n");// Allow .5 sec dwell at each point

viPrintf(vi, "INIT:CONT OFF\n");// Set up for single sweep

viPrintf(vi, "TRIG:SOUR IMM\n");// Triggers the sweep

viPrintf(vi, "INIT\n"); // Takes a single sweep

printf("\n");

// While the instrument is sweeping have the

// program busy with printing to the display.

// The Sleep function, defined in the header

// file windows.h, will pause the program

// operation for .5 seconds

while (sweep==1){

printf("*");

Sleep(500);}

printf("\n");

// The following lines of code will stop the

// events and close down the session

viStatus = viDisableEvent(vi, VI_ALL_ENABLED_EVENTS,VI_ALL_MECH);

viStatus = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ, interupt,
rdBuffer);

viStatus = viClose(vi);

viStatus = viClose(defaultRM);

return 0;

}

78 Chapter 2

Programming Examples
GPIB Programming Examples
// The following function is called when an SRQ event occurs. Code specific to your

// requirements would be entered in the body of the function.

ViStatus _VI_FUNCH interupt(ViSession vi, ViEventType eventType, ViEvent event, ViAddr
addr)

{

ViStatus status;

ViUInt16 stb;

 status = viReadSTB(vi, &stb);// Reads the Status Byte

sweep=0;// Sets the flag to stop the ’*’ printing

printf("\n");// Print user information

printf("An SRQ, indicating end of sweep has occurred\n");

viClose(event);// Closes the event

return VI_SUCCESS;

}

Chapter 2 79

Programming Examples
LAN Programming Examples
LAN Programming Examples
• “VXI-11 Programming Using SICL and C” on page 80

• “VXI-11 Programming Using VISA and C” on page 83

• “Setting Parameters and Sending Queries Using Sockets and C” on page 88

• “Setting the Power Level and Sending Queries Using PERL” on page 114

• “Generating a CW Signal Using Java” on page 116

The LAN programming examples in this section demonstrate the use of VXI-11 and Sockets LAN to control
the signal generator. For details on using FTP and TELNET refer to “Using FTP” on page 26 and “Using
Telnet LAN” on page 22 of this guide.

Before Using the Examples
To use these programming examples you must change references to the IP address and hostname to match
the IP address and hostname of your signal generator.

VXI-11 Programing
The signal generator supports the VXI-11 standard for instrument communication over the LAN interface.
Agilent IO Libraries support the VXI-11 standard and must be installed on your computer before using the
VXI-11 protocol. Refer to “Using VXI-11” on page 20 of this Programming Guide for information on
configuring and using the VXI-11 protocol.

The VXI-11 examples use TCPIP0 as the board address.

VXI-11 Programming Using SICL and C

The following program uses the VXI-11 protocol and SICL to control the signal generator. The signal
generator is set to a 1 GHz CW frequency and then queried for its ID string. Before running this code, you
must set up the interface using the Agilent IO Libraries IO Config utility.

The following program example is available on the ESG Documentation CD-ROM as vxisicl.cpp.

//**

//

// PROGRAM NAME:vxisicl.cpp

//

// PROGRAM DESCRIPTION:Sample test program using SICL and the VXI-11 protocol
80 Chapter 2

Programming Examples
LAN Programming Examples
//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the VXI-11 protocol to set the signal generator for a 1 gHz CW
// frequency. The signal generator is queried for operation complete and then queried

// for its ID string. The frequency and ID string are then printed to the display.

//

// IMPORTANT: Enter in your signal generators hostname in the instrumentName declaration

// where the "xxxxx" appears.

//

//**

#include "stdafx.h"

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

int main(int argc, char* argv[])

{

INST id; // Device session id

int opcResponse; // Variable for response flag

char instrumentName[] = "xxxxx"; // Put your instrument's hostname here

char instNameBuf[256];// Variable to hold instrument name

char buf[256];// Variable for id string

ionerror(I_ERROR_EXIT);// Register SICL error handler

 // Open SICL instrument handle using VXI-11 protocol

sprintf(instNameBuf, "lan[%s]:inst0", instrumentName);

id = iopen(instNameBuf);// Open instrument session

itimeout(id, 1000);// Set 1 second timeout for operations
Chapter 2 81

Programming Examples
LAN Programming Examples
printf("Setting frequency to 1 Ghz...\n");

iprintf(id, "freq 1 GHz\n");// Set frequency to 1 GHz

printf("Waiting for source to settle...\n");

iprintf(id, "*opc?\n");// Query for operation complete

iscanf(id, "%d", &opcResponse); // Operation complete flag

if (opcResponse != 1)// If operation fails, prompt user

{

printf("Bad response to 'OPC?'\n");

iclose(id);

exit(1);

}

iprintf(id, "FREQ?\n");// Query the frequency

iscanf(id, "%t", &buf);// Read the signal generator frequency

printf("\n");// Print the frequency to the display

printf("Frequency of signal generator is %s\n", buf);

ipromptf(id, "*IDN?\n", "%t", buf);// Query for id string

printf("Instrument ID: %s\n", buf);// Print id string to display

iclose(id);// Close the session

return 0;

}

82 Chapter 2

Programming Examples
LAN Programming Examples
VXI-11 Programming Using VISA and C

The following program uses the VXI-11 protocol and the VISA library to control the signal generator. The
signal generator is set to a 1 GHz CW frequency and queried for its ID string. Before running this code, you
must set up the interface using the Agilent IO Libraries IO Config utility.

The following program example is available on the ESG Documentation CD-ROM as vxivisa.cpp.

//**

// PROGRAM FILE NAME:vxivisa.cpp

// Sample test program using the VISA libraries and the VXI-11 protocol

//

// NOTE: You must have the Agilent Libraries installed on your computer to run

// this program

//

// PROGRAM DESCRIPTION:This example uses the VXI-11 protocol and VISA to query

// the signal generator for its ID string. The ID string is then printed to the

// screen. Next the signal generator is set for a -5 dBm power level and then

// queried for the power level. The power level is printed to the screen.

//

// IMPORTANT: Set up the LAN Client using the IO Config utility

//

//**

#include <visa.h>

#include <stdio.h>

#include "StdAfx.h"

#include <stdlib.h>

#include <conio.h>

#define MAX_COUNT 200

int main (void)

{

Chapter 2 83

Programming Examples
LAN Programming Examples
ViStatus status;// Declares a type ViStatus variable

ViSession defaultRM, instr;// Declares a type ViSession variable

ViUInt32 retCount;// Return count for string I/O

ViChar buffer[MAX_COUNT];// Buffer for string I/O

status = viOpenDefaultRM(&defaultRM); // Initialize the system

 // Open communication with Serial

 // Port 2

status = viOpen(defaultRM, "TPCIP0::19::INSTR", VI_NULL, VI_NULL, &instr);

if(status){ // If problems then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

 // Set timeout for 5 seconds

viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

 // Ask for sig gen ID string

 status = viWrite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

 // Read the sig gen response

 status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0'; // Indicate the end of the string

printf("Signal Generator ID = "); // Print header for ID

printf(buffer); // Print the ID string

printf("\n"); // Print carriage return

 // Flush the read buffer

 // Set sig gen power to -5dbm

status = viWrite(instr, (ViBuf)"POW:AMPL -5dbm\n", 15, &retCount);

 // Query the power level

status = viWrite(instr, (ViBuf)"POW?\n",5,&retCount);
84 Chapter 2

Programming Examples
LAN Programming Examples
 // Read the power level

status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0'; // Indicate the end of the string

printf("Power level = "); // Print header to the screen

printf(buffer); // Print the queried power level

printf("\n");

status = viClose(instr); // Close down the system

status = viClose(defaultRM);

return 0;

}

Sockets LAN Programming using C
The program listing shown in “Setting Parameters and Sending Queries Using Sockets and C” on page 88
consists of two files; lanio.c and getopt.c. The lanio.c file has two main functions; int main() and an int
main1().

The int main() function allows communication with the signal generator interactively from the command
line. The program reads the signal generator's hostname from the command line, followed by the SCPI
command. It then opens a socket to the signal generator, using port 5025, and sends the command. If the
command appears to be a query, the program queries the signal generator for a response, and prints the
response.

The int main1(), after renaming to int main(), will output a sequence of commands to the signal
generator. You can use the format as a template and then add your own code.

This program is available on the ESG Documentation CD-ROM as lanio.c

Sockets on UNIX

In UNIX, LAN communication via sockets is very similar to reading or writing a file. The only difference is
the openSocket() routine, which uses a few network library routines to create the TCP/IP network
connection. Once this connection is created, the standard fread() and fwrite() routines are used for
network communication. The following steps outline the process:

1. Copy the lanio.c and getopt.c files to your home UNIX directory. For example, /users/mydir/.

2. At the UNIX prompt in your home directory type: cc -Aa -O -o lanio lanio.c

3. At the UNIX prompt in your home directory type: ./lanio xxxxx “*IDN?” where xxxxx is the
hostname for the signal generator. Use this same format to output SCPI commands to the signal
generator.
Chapter 2 85

Programming Examples
LAN Programming Examples
The int main1() function will output a sequence of commands in a program format. If you want to run a
program using a sequence of commands then perform the following:

1. Rename the lanio.c int main1() to int main() and the original int main() to int main1().

2. In the main(), openSocket() function, change the “your hostname here” string to the hostname of
the signal generator you want to control.

3. Resave the lanio.c program

4. At the UNIX prompt type: cc -Aa -O -o lanio lanio.c

5. At the UNIX prompt type: ./lanio

The program will run and output a sequence of SCPI commands to the signal generator. The UNIX display
will show a display similar to the following:

unix machine: /users/mydir
$./lanio
ID: Agilent Technologies, E4438C, US70000001, C.02.00

Frequency: +2.5000000000000E+09
Power Level: -5.00000000E+000

Sockets on Windows

In Windows, the routines send() and recv() must be used, since fread() and fwrite() may not work on sockets.
The following steps outline the process for running the interactive program in the Microsoft Visual C++ 6.0
environment:

1. Rename the lanio.c to lanio.cpp and getopt.c to getopt.cpp and add them to the Source folder of the
Visual C++ project.

NOTE The int main() function in the lanio.cpp file will allow commands to be sent to the signal
generator in a line-by-line format; the user types in SCPI commands. The int main1(0)
function can be used to output a sequence of commands in a “program format.” See
Programming Using main1() Function. below.

2. Click Rebuild All from Build menu. Then Click Execute Lanio.exe. The Debug window will appear with a
prompt “Press any key to continue.” This indicates that the program has compiled and can be used to
send commands to the signal generator.

3. Click Start, click Programs, then click Command Prompt. The command prompt window will appear.
86 Chapter 2

Programming Examples
LAN Programming Examples
4. At the command prompt, cd to the directory containing the lanio.exe file and then to the Debug folder.
For example C:\SocketIO\Lanio\Debug.

5. After you cd to the directory where the lanio.exe file is located, type in the following command at the
command prompt: lanio xxxxx “*IDN?” . For example:
C:\SocketIO\Lanio\Debug>lanio xxxxx “*IDN?” where the xxxxx is the hostname of your
signal generator. Use this format to output SCPI commands to the signal generator in a line by line
format from the command prompt.

6. Type exit at the command prompt to quit the program.

Programming Using main1() Function.

The int main1() function will output a sequence of commands in a program format. If you want to run a
program using a sequence of commands then perform the following:

1. Enter the hostname of your signal generator in the openSocket function of the main1() function of the
lanio.cpp program.

2. Rename the lanio.cpp int main1() function to int main() and the original int main() function
to int main1().

3. Select Rebuild All from Build menu. Then select Execute Lanio.exe.

The program will run and display the results as shown in Figure 2-1.

Figure 2-1 Program Output Screen
Chapter 2 87

Programming Examples
LAN Programming Examples
Setting Parameters and Sending Queries Using Sockets and C

The following programming examples are available on the ESG Documentation CD-ROM as lanio.c and
getopt.c.

 /***

 * $Header: lanio.c 04/24/01

 * $Revision: 1.1 $

 * $Date: 10/24/01

 * PROGRAM NAME: lanio.c

 *

 * $Description: Functions to talk to an Agilent signal generator

 * via TCP/IP. Uses command-line arguments.

 *

 * A TCP/IP connection to port 5025 is established and

 * the resultant file descriptor is used to "talk" to the

 * instrument using regular socket I/O mechanisms. $

 *

 *

 *

 * Examples:

 *

 * Query the signal generator frequency:

 * lanio xx.xxx.xx.x 'FREQ?'

 *

 * Query the signal generator power level:

 * lanio xx.xxx.xx.x 'POW?'

 *

 * Check for errors (gets one error):

 * lanio xx.xxx.xx.x 'syst:err?'

 *

 * Send a list of commands from a file, and number them:

 * cat scpi_cmds | lanio -n xx.xxx.xx.x

 *
88 Chapter 2

Programming Examples
LAN Programming Examples
 **

 *

 * This program compiles and runs under

 * - HP-UX 10.20 (UNIX), using HP cc or gcc:

 * + cc -Aa -O -o lanio lanio.c

 * + gcc -Wall -O -o lanio lanio.c

 *

 * - Windows 95, using Microsoft Visual C++ 4.0 Standard Edition

 * - Windows NT 3.51, using Microsoft Visual C++ 4.0

 * + Be sure to add WSOCK32.LIB to your list of libraries!

 * + Compile both lanio.c and getopt.c

 * + Consider re-naming the files to lanio.cpp and getopt.cpp

 *

 * Considerations:

 * - On UNIX systems, file I/O can be used on network sockets.

 * This makes programming very convenient, since routines like

 * getc(), fgets(), fscanf() and fprintf() can be used. These

 * routines typically use the lower level read() and write() calls.

 *

 * - In the Windows environment, file operations such as read(), write(),

 * and close() cannot be assumed to work correctly when applied to

 * sockets. Instead, the functions send() and recv() MUST be used.

 ***/

/* Support both Win32 and HP-UX UNIX environment */

#ifdef _WIN32 /* Visual C++ 6.0 will define this */

define WINSOCK

#endif

#ifndef WINSOCK

ifndef _HPUX_SOURCE
Chapter 2 89

Programming Examples
LAN Programming Examples
define _HPUX_SOURCE

endif

#endif

#include <stdio.h> /* for fprintf and NULL */

#include <string.h> /* for memcpy and memset */

#include <stdlib.h> /* for malloc(), atol() */

#include <errno.h> /* for strerror */

#ifdef WINSOCK

#include <windows.h>

ifndef _WINSOCKAPI_

include <winsock.h> // BSD-style socket functions

endif

#else /* UNIX with BSD sockets */

include <sys/socket.h> /* for connect and socket*/

include <netinet/in.h> /* for sockaddr_in */

include <netdb.h> /* for gethostbyname */

define SOCKET_ERROR (-1)

define INVALID_SOCKET (-1)

 typedef int SOCKET;

#endif /* WINSOCK */

#ifdef WINSOCK

 /* Declared in getopt.c. See example programs disk. */
90 Chapter 2

Programming Examples
LAN Programming Examples
 extern char *optarg;

 extern int optind;

 extern int getopt(int argc, char * const argv[], const char* optstring);

#else

include <unistd.h> /* for getopt(3C) */

#endif

#define COMMAND_ERROR (1)

#define NO_CMD_ERROR (0)

#define SCPI_PORT 5025

#define INPUT_BUF_SIZE (64*1024)

/**

 * Display usage

 **/

static void usage(char *basename)

{

 fprintf(stderr,"Usage: %s [-nqu] <hostname> [<command>]\n", basename);

 fprintf(stderr," %s [-nqu] <hostname> < stdin\n", basename);

 fprintf(stderr," -n, number output lines\n");

 fprintf(stderr," -q, quiet; do NOT echo lines\n");

 fprintf(stderr," -e, show messages in error queue when done\n");

}

#ifdef WINSOCK

int init_winsock(void)

{

Chapter 2 91

Programming Examples
LAN Programming Examples
 WORD wVersionRequested;

 WSADATA wsaData;

 int err;

 wVersionRequested = MAKEWORD(1, 1);

 wVersionRequested = MAKEWORD(2, 0);

 err = WSAStartup(wVersionRequested, &wsaData);

 if (err != 0) {

 /* Tell the user that we couldn't find a useable */

 /* winsock.dll. */

 fprintf(stderr, "Cannot initialize Winsock 1.1.\n");

 return -1;

 }

 return 0;

}

int close_winsock(void)

{

 WSACleanup();

 return 0;

}

#endif /* WINSOCK */

/***

 *

 > $Function: openSocket$

 *

 * $Description: open a TCP/IP socket connection to the instrument $

 *
92 Chapter 2

Programming Examples
LAN Programming Examples
 * $Parameters: $

 * (const char *) hostname Network name of instrument.

 * This can be in dotted decimal notation.

 * (int) portNumber The TCP/IP port to talk to.

 * Use 5025 for the SCPI port.

 *

 * $Return: (int) A file descriptor similar to open(1).$

 *

 * $Errors: returns -1 if anything goes wrong $

 *

 ***/

SOCKET openSocket(const char *hostname, int portNumber)

{

 struct hostent *hostPtr;

 struct sockaddr_in peeraddr_in;

 SOCKET s;

 memset(&peeraddr_in, 0, sizeof(struct sockaddr_in));

 /***/

 /* map the desired host name to internal form. */

 /***/

 hostPtr = gethostbyname(hostname);

 if (hostPtr == NULL)

 {

 fprintf(stderr,"unable to resolve hostname '%s'\n", hostname);

 return INVALID_SOCKET;

 }

 /*******************/

 /* create a socket */
Chapter 2 93

Programming Examples
LAN Programming Examples
 /*******************/

 s = socket(AF_INET, SOCK_STREAM, 0);

 if (s == INVALID_SOCKET)

 {

 fprintf(stderr,"unable to create socket to '%s': %s\n",

 hostname, strerror(errno));

 return INVALID_SOCKET;

 }

 memcpy(&peeraddr_in.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_length);

 peeraddr_in.sin_family = AF_INET;

 peeraddr_in.sin_port = htons((unsigned short)portNumber);

 if (connect(s, (const struct sockaddr*)&peeraddr_in,

 sizeof(struct sockaddr_in)) == SOCKET_ERROR)

 {

 fprintf(stderr,"unable to create socket to '%s': %s\n",

 hostname, strerror(errno));

 return INVALID_SOCKET;

 }

 return s;

}

/***

 *

 > $Function: commandInstrument$

 *

 * $Description: send a SCPI command to the instrument.$

 *
94 Chapter 2

Programming Examples
LAN Programming Examples
 * $Parameters: $

 * (FILE *) file pointer associated with TCP/IP socket.

 * (const char *command) . . SCPI command string.

 * $Return: (char *) a pointer to the result string.

 *

 * $Errors: returns 0 if send fails $

 *

 ***/

int commandInstrument(SOCKET sock,

 const char *command)

{

 int count;

 /* fprintf(stderr, "Sending \"%s\".\n", command); */

 if (strchr(command, '\n') == NULL) {

 fprintf(stderr, "Warning: missing newline on command %s.\n", command);

 }

 count = send(sock, command, strlen(command), 0);

 if (count == SOCKET_ERROR) {

 return COMMAND_ERROR;

 }

 return NO_CMD_ERROR;

}

/**

 * recv_line(): similar to fgets(), but uses recv()

 **/

char * recv_line(SOCKET sock, char * result, int maxLength)

{

Chapter 2 95

Programming Examples
LAN Programming Examples
#ifdef WINSOCK

 int cur_length = 0;

 int count;

 char * ptr = result;

 int err = 1;

 while (cur_length < maxLength) {

 /* Get a byte into ptr */

 count = recv(sock, ptr, 1, 0);

 /* If no chars to read, stop. */

 if (count < 1) {

 break;

 }

 cur_length += count;

 /* If we hit a newline, stop. */

 if (*ptr == '\n') {

 ptr++;

 err = 0;

 break;

 }

 ptr++;

 }

 *ptr = '\0';

 if (err) {

 return NULL;

 } else {

 return result;
96 Chapter 2

Programming Examples
LAN Programming Examples
 }

#else

 /***

 * Simpler UNIX version, using file I/O. recv() version works too.

 * This demonstrates how to use file I/O on sockets, in UNIX.

 ***/

 FILE * instFile;

 instFile = fdopen(sock, "r+");

 if (instFile == NULL)

 {

 fprintf(stderr, "Unable to create FILE * structure : %s\n",

 strerror(errno));

 exit(2);

 }

 return fgets(result, maxLength, instFile);

#endif

}

/***

 *

 > $Function: queryInstrument$

 *

 * $Description: send a SCPI command to the instrument, return a response.$

 *

 * $Parameters: $

 * (FILE *) file pointer associated with TCP/IP socket.

 * (const char *command) . . SCPI command string.

 * (char *result) where to put the result.

 * (size_t) maxLength maximum size of result array in bytes.

 *
Chapter 2 97

Programming Examples
LAN Programming Examples
 * $Return: (long) The number of bytes in result buffer.

 *

 * $Errors: returns 0 if anything goes wrong. $

 *

 ***/

long queryInstrument(SOCKET sock,

 const char *command, char *result, size_t maxLength)

{

 long ch;

 char tmp_buf[8];

 long resultBytes = 0;

 int command_err;

 int count;

 /***

 * Send command to signal generator

 ***/

 command_err = commandInstrument(sock, command);

 if (command_err) return COMMAND_ERROR;

 /***

 * Read response from signal generator

 **/

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

 ch = tmp_buf[0];

 if ((count < 1) || (ch == EOF) || (ch == '\n'))

 {

 result = '\0'; / null terminate result for ascii */

 return 0;

 }
98 Chapter 2

Programming Examples
LAN Programming Examples

 /* use a do-while so we can break out */

 do

 {

 if (ch == '#')

 {

 /* binary data encountered - figure out what it is */

 long numDigits;

 long numBytes = 0;

 /* char length[10]; */

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

 ch = tmp_buf[0];

 if ((count < 1) || (ch == EOF)) break; /* End of file */

 if (ch < '0' || ch > '9') break; /* unexpected char */

 numDigits = ch - '0';

 if (numDigits)

 {

 /* read numDigits bytes into result string. */

 count = recv(sock, result, (int)numDigits, 0);

 result[count] = 0; /* null terminate */

 numBytes = atol(result);

 }

 if (numBytes)

 {

 resultBytes = 0;

 /* Loop until we get all the bytes we requested. */

 /* Each call seems to return up to 1457 bytes, on HP-UX 9.05 */

 do {
Chapter 2 99

Programming Examples
LAN Programming Examples
 int rcount;

 rcount = recv(sock, result, (int)numBytes, 0);

 resultBytes += rcount;

 result += rcount; /* Advance pointer */

 } while (resultBytes < numBytes);

 /**

 * For LAN dumps, there is always an extra trailing newline

 * Since there is no EOI line. For ASCII dumps this is

 * great but for binary dumps, it is not needed.

 ***/

 if (resultBytes == numBytes)

 {

 char junk;

 count = recv(sock, &junk, 1, 0);

 }

 }

 else

 {

 /* indefinite block ... dump til we can an extra line feed */

 do

 {

 if (recv_line(sock, result, maxLength) == NULL) break;

 if (strlen(result)==1 && *result == '\n') break;

 resultBytes += strlen(result);

 result += strlen(result);

 } while (1);

 }

 }

 else

 {

 /* ASCII response (not a binary block) */
100 Chapter 2

Programming Examples
LAN Programming Examples
 *result = (char)ch;

 if (recv_line(sock, result+1, maxLength-1) == NULL) return 0;

 /* REMOVE trailing newline, if present. And terminate string. */

 resultBytes = strlen(result);

 if (result[resultBytes-1] == '\n') resultBytes -= 1;

 result[resultBytes] = '\0';

 }

 } while (0);

 return resultBytes;

}

/***

 *

 > $Function: showErrors$

 *

 * $Description: Query the SCPI error queue, until empty. Print results. $

 *

 * $Return: (void)

 *

 ***/

void showErrors(SOCKET sock)

{

 const char * command = "SYST:ERR?\n";

 char result_str[256];

 do {

 queryInstrument(sock, command, result_str, sizeof(result_str)-1);
Chapter 2 101

Programming Examples
LAN Programming Examples

 /**

 * Typical result_str:

 * -221,"Settings conflict; Frequency span reduced."

 * +0,"No error"

 * Don't bother decoding.

 **/

 if (strncmp(result_str, "+0,", 3) == 0) {

 /* Matched +0,"No error" */

 break;

 }

 puts(result_str);

 } while (1);

}

/***

 *

 > $Function: isQuery$

 *

 * $Description: Test current SCPI command to see if it a query. $

 *

 * $Return: (unsigned char) . . . non-zero if command is a query. 0 if not.

 *

 ***/

unsigned char isQuery(char* cmd)

{

 unsigned char q = 0 ;

 char *query ;

 /***/
102 Chapter 2

Programming Examples
LAN Programming Examples
 /* if the command has a '?' in it, use queryInstrument. */

 /* otherwise, simply send the command. */

 /* Actually, we must be a more specific so that */

 /* marker value querys are treated as commands. */

 /* Example: SENS:FREQ:CENT (CALC1:MARK1:X?) */

 /***/

 if ((query = strchr(cmd,'?')) != NULL)

 {

 /* Make sure we don't have a marker value query, or

 * any command with a '?' followed by a ')' character.

 * This kind of command is not a query from our point of view.

 * The signal generator does the query internally, and uses the result.

 */

 query++ ; /* bump past '?' */

 while (*query)

 {

 if (*query == ' ') /* attempt to ignore white spc */

 query++ ;

 else break ;

 }

 if (*query != ')')

 {

 q = 1 ;

 }

 }

 return q ;

}

/***

 *

 > $Function: main$
Chapter 2 103

Programming Examples
LAN Programming Examples
 *

 * $Description: Read command line arguments, and talk to signal generator.

 Send query results to stdout. $

 *

 * $Return: (int) . . . non-zero if an error occurs

 *

 ***/

int main(int argc, char *argv[])

{

 SOCKET instSock;

 char *charBuf = (char *) malloc(INPUT_BUF_SIZE);

 char *basename;

 int chr;

 char command[1024];

 char *destination;

 unsigned char quiet = 0;

 unsigned char show_errs = 0;

 int number = 0;

 basename = strrchr(argv[0], '/');

 if (basename != NULL)

 basename++ ;

 else

 basename = argv[0];

 while ((chr = getopt(argc,argv,"qune")) != EOF)

 switch (chr)

 {

 case 'q': quiet = 1; break;

 case 'n': number = 1; break ;
104 Chapter 2

Programming Examples
LAN Programming Examples
 case 'e': show_errs = 1; break ;

 case 'u':

 case '?': usage(basename); exit(1) ;

 }

 /* now look for hostname and optional <command>*/

 if (optind < argc)

 {

 destination = argv[optind++] ;

 strcpy(command, "");

 if (optind < argc)

 {

 while (optind < argc) {

 /* <hostname> <command> provided; only one command string */

 strcat(command, argv[optind++]);

 if (optind < argc) {

 strcat(command, " ");

 } else {

 strcat(command, "\n");

 }

 }

 }

 else

 {

 /*Only <hostname> provided; input on <stdin> */

 strcpy(command, "");

 if (optind > argc)

 {

 usage(basename);

 exit(1);

 }
Chapter 2 105

Programming Examples
LAN Programming Examples
 }

 }

 else

 {

 /* no hostname! */

 usage(basename);

 exit(1);

 }

 /**

 /* open a socket connection to the instrument

 /**/

#ifdef WINSOCK

 if (init_winsock() != 0) {

 exit(1);

 }

#endif /* WINSOCK */

 instSock = openSocket(destination, SCPI_PORT);

 if (instSock == INVALID_SOCKET) {

 fprintf(stderr, "Unable to open socket.\n");

 return 1;

 }

 /* fprintf(stderr, "Socket opened.\n"); */

 if (strlen(command) > 0)

 {

 /***

 /* if the command has a '?' in it, use queryInstrument. */

 /* otherwise, simply send the command. */

 /***/
106 Chapter 2

Programming Examples
LAN Programming Examples
 if (isQuery(command))

 {

 long bufBytes;

 bufBytes = queryInstrument(instSock, command,

 charBuf, INPUT_BUF_SIZE);

 if (!quiet)

 {

 fwrite(charBuf, bufBytes, 1, stdout);

 fwrite("\n", 1, 1, stdout) ;

 fflush(stdout);

 }

 }

 else

 {

 commandInstrument(instSock, command);

 }

 }

 else

 {

 /* read a line from <stdin> */

 while (gets(charBuf) != NULL)

 {

 if (!strlen(charBuf))

 continue ;

 if (*charBuf == '#' || *charBuf == '!')

 continue ;

 strcat(charBuf, "\n");

 if (!quiet)

 {
Chapter 2 107

Programming Examples
LAN Programming Examples
 if (number)

 {

 char num[10];

 sprintf(num,"%d: ",number);

 fwrite(num, strlen(num), 1, stdout);

 }

 fwrite(charBuf, strlen(charBuf), 1, stdout) ;

 fflush(stdout);

 }

 if (isQuery(charBuf))

 {

 long bufBytes;

 /* Put the query response into the same buffer as the*/

 /* command string appended after the null terminator.*/

 bufBytes = queryInstrument(instSock, charBuf,

 charBuf + strlen(charBuf) + 1,

 INPUT_BUF_SIZE -strlen(charBuf));

 if (!quiet)

 {

 fwrite(" ", 2, 1, stdout) ;

 fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);

 fwrite("\n", 1, 1, stdout) ;

 fflush(stdout);

 }

 }

 else

 {

 commandInstrument(instSock, charBuf);

 }
108 Chapter 2

Programming Examples
LAN Programming Examples
 if (number) number++;

 }

 }

 if (show_errs) {

 showErrors(instSock);

 }

#ifdef WINSOCK

 closesocket(instSock);

 close_winsock();

#else

 close(instSock);

#endif /* WINSOCK */

 return 0;

}

/* End of lanio.cpp *

/**/

/* $Function: main1$ */

/* $Description: Output a series of SCPI commands to the signal generator */

/* Send query results to stdout. $ */

/* */

/* $Return: (int) . . . non-zero if an error occurs */

/* */

/**/

/* Rename this int main1() function to int main(). Re-compile and the */

/* execute the program */
Chapter 2 109

Programming Examples
LAN Programming Examples
/**/

int main1()

{

SOCKET instSock;

long bufBytes;

 char *charBuf = (char *) malloc(INPUT_BUF_SIZE);

 /***/

 /* open a socket connection to the instrument*/

 /***/

#ifdef WINSOCK

 if (init_winsock() != 0) {

 exit(1);

 }

#endif /* WINSOCK */

 instSock = openSocket("xxxxxx", SCPI_PORT); /* Put your hostname here */

 if (instSock == INVALID_SOCKET) {

 fprintf(stderr, "Unable to open socket.\n");

 return 1;

 }

 /* fprintf(stderr, "Socket opened.\n"); */

 bufBytes = queryInstrument(instSock, "*IDN?\n", charBuf, INPUT_BUF_SIZE);

 printf("ID: %s\n",charBuf);

 commandInstrument(instSock, "FREQ 2.5 GHz\n");

 printf("\n");

 bufBytes = queryInstrument(instSock, "FREQ:CW?\n", charBuf, INPUT_BUF_SIZE);
110 Chapter 2

Programming Examples
LAN Programming Examples
 printf("Frequency: %s\n",charBuf);

 commandInstrument(instSock, "POW:AMPL -5 dBm\n");

 bufBytes = queryInstrument(instSock, "POW:AMPL?\n", charBuf, INPUT_BUF_SIZE);

 printf("Power Level: %s\n",charBuf);

 printf("\n");

#ifdef WINSOCK

 closesocket(instSock);

 close_winsock();

#else

 close(instSock);

#endif /* WINSOCK */

 return 0;

}

/***

 getopt(3C) getopt(3C)

PROGRAM FILE NAME: getopt.c

getopt - get option letter from argument vector

 SYNOPSIS

 int getopt(int argc, char * const argv[], const char *optstring);

extern char *optarg;

 extern int optind, opterr, optopt;

 PRORGAM DESCRIPTION:

 getopt returns the next option letter in argv (starting from argv[1])

 that matches a letter in optstring. optstring is a string of

 recognized option letters; if a letter is followed by a colon, the
Chapter 2 111

Programming Examples
LAN Programming Examples
 option is expected to have an argument that may or may not be

 separated from it by white space. optarg is set to point to the start

 of the option argument on return from getopt.

 getopt places in optind the argv index of the next argument to be

 processed. The external variable optind is initialized to 1 before

 the first call to the function getopt.

 When all options have been processed (i.e., up to the first non-option

 argument), getopt returns EOF. The special option -- can be used to

 delimit the end of the options; EOF is returned, and -- is skipped.

 ***/

#include <stdio.h> /* For NULL, EOF */

#include <string.h> /* For strchr() */

char *optarg; /* Global argument pointer. */

int optind = 0; /* Global argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

{

 char c;

 char *posn;

 optarg = NULL;

 if (scan == NULL || *scan == '\0') {

 if (optind == 0)
112 Chapter 2

Programming Examples
LAN Programming Examples
 optind++;

 if (optind >= argc || argv[optind][0] != '-' || argv[optind][1] == '\0')

 return(EOF);

 if (strcmp(argv[optind], "--")==0) {

 optind++;

 return(EOF);

 }

 scan = argv[optind]+1;

 optind++;

 }

 c = *scan++;

 posn = strchr(optstring, c); /* DDP */

 if (posn == NULL || c == ':') {

 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);

 return('?');

 }

 posn++;

 if (*posn == ':') {

 if (*scan != '\0') {

 optarg = scan;

 scan = NULL;

 } else {

 optarg = argv[optind];

 optind++;

 }

 }

Chapter 2 113

Programming Examples
LAN Programming Examples
 return(c);

}

Sockets LAN Programming Using PERL
This example uses PERL script to control the signal generator over the sockets LAN interface. The signal
generator frequency is set to 1 GHz, queried for operation complete and then queried for it’s identify string.
This example was developed using PERL version 5.6.0 and requires a PERL version with the IO::Socket
library.

1. In the code below, enter your signal generator’s hostname in place of the xxxxx in the code line: my
$instrumentName= “xxxxx”; .

2. Save the code listed below using the filename lanperl.

3. Run the program by typing perl lanperl at the UNIX term window prompt.

Setting the Power Level and Sending Queries Using PERL

The following program example is available on the ESG Documentation CD-ROM as perl.txt.

#!/usr/bin/perl

PROGRAM NAME: perl.txt

Example of talking to the signal generator via SCPI-over-sockets

use IO::Socket;

Change to your instrument's hostname

my $instrumentName = "xxxxx";

Get socket

$sock = new IO::Socket::INET (PeerAddr => $instrumentName,

 PeerPort => 5025,

 Proto => 'tcp',

);

die "Socket Could not be created, Reason: $!\n" unless $sock;

Set freq

print "Setting frequency...\n";

print $sock "freq 1 GHz\n";
114 Chapter 2

Programming Examples
LAN Programming Examples
Wait for completion

print "Waiting for source to settle...\n";

print $sock "*opc?\n";

my $response = <$sock>;

chomp $response; # Removes newline from response

if ($response ne "1")

{

 die "Bad response to '*OPC?' from instrument!\n";

}

Send identification query

print $sock "*IDN?\n";

$response = <$sock>;

chomp $response;

print "Instrument ID: $response\n";

Sockets LAN Programming Using Java
In this example the Java program connects to the signal generator via sockets LAN. This program requires
Java version 1.1 or later be installed on your PC. To run the program perform the following steps:

1. In the code example below, type in the hostname or IP address of your signal generator. For example,
String instrumentName = (your signal generator’s hostname).

2. Copy the program as ScpiSockTest.java and save it in a convenient directory on your computer.
For example save the file to the C:\jdk1.3.0_2\bin\javac directory.

3. Launch the Command Prompt program on your computer. Click Start > Programs > Command Prompt.

4. Compile the program. At the command prompt type: javac ScpiSockTest.java.
The directory path for the Java compiler must be specified. For example:
C:\>jdk1.3.0_02\bin\javac ScpiSockTest.java

5. Run the program by typing java ScpiSockTest at the command prompt.

6. Type exit at the command prompt to end the program.
Chapter 2 115

Programming Examples
LAN Programming Examples
Generating a CW Signal Using Java

The following program example is available on the ESG Documentation CD-ROM as javaex.txt.

//**

// PROGRAM NAME: javaex.txt
// Sample java program to talk to the signal generator via SCPI-over-sockets

// This program requires Java version 1.1 or later.

// Save this code as ScpiSockTest.java

// Compile by typing: javac ScpiSockTest.java

// Run by typing: java ScpiSockTest

// The signal generator is set for 1 GHz and queried for its id string

//**

import java.io.*;

import java.net.*;

class ScpiSockTest

{

 public static void main(String[] args)

 {

 String instrumentName = "xxxxx"; // Put instrument hostname here

try

 {

 Socket t = new Socket(instrumentName,5025); // Connect to instrument

 // Setup read/write mechanism

 BufferedWriter out =

 new BufferedWriter(

 new OutputStreamWriter(t.getOutputStream()));

 BufferedReader in =

 new BufferedReader(

 new InputStreamReader(t.getInputStream()));

 System.out.println("Setting frequency to 1 GHz...");

 out.write("freq 1GHz\n"); // Sets frequency

 out.flush();
116 Chapter 2

Programming Examples
LAN Programming Examples
 System.out.println("Waiting for source to settle...");

 out.write("*opc?\n"); // Waits for completion

 out.flush();

 String opcResponse = in.readLine();

 if (!opcResponse.equals("1"))

{

 System.err.println("Invalid response to '*OPC?'!");

 System.exit(1);

}

 System.out.println("Retrieving instrument ID...");

 out.write("*idn?\n"); // Querys the id string

 out.flush();

 String idnResponse = in.readLine(); // Reads the id string

 // Prints the id string

 System.out.println("Instrument ID: " + idnResponse);

 }

 catch (IOException e)

{

 System.out.println("Error" + e);

 }

 }

}
Chapter 2 117

Programming Examples
RS-232 Programming Examples
RS-232 Programming Examples
• “Interface Check Using Agilent BASIC” on page 118

• “Interface Check Using VISA and C” on page 119

• “Queries Using Agilent BASIC” on page 121

• “Queries Using VISA and C” on page 122

Before Using the Examples
On the signal generator select the following settings:

• Baud Rate - 9600 must match computer’s baud rate

• RS-232 Echo - Off

Interface Check Using Agilent BASIC
This example program causes the signal generator to perform an instrument reset. The SCPI command *RST
will place the signal generator into a pre-defined state.

The serial interface address for the signal generator in this example is 9. The serial port used is COM1
(Serial A on some computers). Refer to “Using RS-232” on page 28 for more information.

Watch for the signal generator’s Listen annunciator (L) and the ‘remote preset....’ message on the front panel
display. If there is no indication, check that the RS-232 cable is properly connected to the computer serial
port and that the manual setup listed above is correct.

If the compiler displays an error message, or the program hangs, it is possible that the program was typed
incorrectly. Press the signal generator’s Reset RS-232 softkey and re-run the program. Refer to “If You Have
Problems” on page 31 for more help.

The following program example is available on the ESG Documentation CD-ROM as rs232ex1.txt.

10 !**

20 !

30 ! PROGRAM NAME: rs232ex1.txt

40 !

50 ! PROGRAM DESCRIPTION: This program verifies that the RS-232 connections and

60 ! interface are functional.

70 !
118 Chapter 2

Programming Examples
RS-232 Programming Examples
80 ! Connect the UNIX workstation to the signal generator using an RS-232 cable

90 !

100 !

110 ! Run Agilent BASIC, type in the following commands and then RUN the program

120 !

130 !

140 !**

150 !

160 INTEGER Num

170 CONTROL 9,0;1 ! Resets the RS-232 interface

180 CONTROL 9,3;9600 ! Sets the baud rate to match the sig gen

190 STATUS 9,4;Stat ! Reads the value of register 4

200 Num=BINAND(Stat,7) ! Gets the AND value

210 CONTROL 9,4;Num ! Sets parity to NONE

220 OUTPUT 9;"*RST" ! Outputs reset to the sig gen

230 END ! End the program

Interface Check Using VISA and C
This program uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional. In this example the COM2 port is used. The serial
port is referred to in the VISA library as ‘ASRL1’ or ‘ASRL2’ depending on the computer serial port you
are using. Launch Microsoft Visual C++, add the required files, and enter the following code into the .cpp
source file.

The following program example is available on the ESG Documentation CD-ROM as rs232ex1.cpp.

//**

// PROGRAM NAME: rs232ex1.cpp

//

// PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to

// control the signal generator.

//

// Connect the computer to the signal generator using an RS-232 serial cable.

// The user is asked to set the signal generator for a 0 dBm power level

// A reset command *RST is sent to the signal generator via the RS-232
Chapter 2 119

Programming Examples
RS-232 Programming Examples
// interface and the power level will reset to the -135 dBm level.The default

// attributes e.g. 9600 baud, no parity, 8 data bits,1 stop bit are used.

// These attributes can be changed using VISA functions.

//

// IMPORTANT: Set the signal generator BAUD rate to 9600 for this test

//**

#include <visa.h>

#include <stdio.h>

#include "StdAfx.h"

#include <stdlib.h>

#include <conio.h>

void main ()

{

int baud=9600;// Set baud rate to 9600

printf("Manually set the signal generator power level to 0 dBm\n");

printf("\n");

printf("Press any key to continue\n");

getch();

printf("\n");

ViSession defaultRM, vi;// Declares a variable of type ViSession

// for instrument communication on COM 2 port

ViStatus viStatus = 0;

// Opens session to RS-232 device at serial port 2

viStatus=viOpenDefaultRM(&defaultRM);

viStatus=viOpen(defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &vi);

if(viStatus){// If operation fails, prompt user
120 Chapter 2

Programming Examples
RS-232 Programming Examples
printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

// initialize device

viStatus=viEnableEvent(vi, VI_EVENT_IO_COMPLETION, VI_QUEUE,VI_NULL);

viClear(vi);// Sends device clear command

// Set attributes for the session

viSetAttribute(vi,VI_ATTR_ASRL_BAUD,baud);

viSetAttribute(vi,VI_ATTR_ASRL_DATA_BITS,8);

viPrintf(vi, "*RST\n");// Resets the signal generator

printf("The signal generator has been reset\n");

printf("Power level should be -135 dBm\n");

printf("\n");// Prints new line character to the display

viClose(vi);// Closes session

viClose(defaultRM);// Closes default session

}

Queries Using Agilent BASIC
This example program demonstrates signal generator query commands over RS-232. Query commands are
of the type *IDN? and are identified by the question mark that follows the mnemonic.

Start Agilent BASIC, type in the following commands, and then RUN the program:

The following program example is available on the ESG Documentation CD-ROM as rs232ex2.txt.

10 !**

20 !

30 ! PROGRAM NAME: rs232ex2.txt

40 !

50 ! PROGRAM DESCRIPTION: In this example, query commands are used to read

60 ! data from the signal generator.

70 !
Chapter 2 121

Programming Examples
RS-232 Programming Examples
80 ! Start Agilent BASIC, type in the following code and then RUN the program.

90 !

100 !**

110 !

120 INTEGER Num

130 DIM Str$[200],Str1$[20]

140 CONTROL 9,0;1 ! Resets the RS-232 interface

150 CONTROL 9,3;9600 ! Sets the baud rate to match signal generator rate

160 STATUS 9,4;Stat ! Reads the value of register 4

170 Num=BINAND(Stat,7) ! Gets the AND value

180 CONTROL 9,4;Num ! Sets the parity to NONE

190 OUTPUT 9;"*IDN?" ! Querys the sig gen ID

200 ENTER 9;Str$! Reads the ID

210 WAIT 2 ! Waits 2 seconds

220 PRINT "ID =",Str$! Prints ID to the screen

230 OUTPUT 9;"POW:AMPL -5 dbm" ! Sets the the power level to -5 dbm

240 OUTPUT 9;"POW?" ! Querys the power level of the sig gen

250 ENTER 9;Str1$! Reads the queried value

260 PRINT "Power = ",Str1$! Prints the power level to the screen

270 END ! End the program

Queries Using VISA and C
This example uses VISA library functions to communicate with the signal generator. The program verifies
that the RS-232 connections and interface are functional. Launch Microsoft Visual C++, add the required
files, and enter the following code into your .cpp source file.

The following program example is available on the ESG Documentation CD-ROM as rs232ex2.cpp.

//**

//

// PROGRAM NAME: rs232ex2.cpp

//

// PROGRAM DESCRIPTION: This code example uses the RS-232 serial interface to control

// the signal generator.
122 Chapter 2

Programming Examples
RS-232 Programming Examples
//

// Connect the computer to the signal generator using the RS-232 serial cable

// and enter the following code into the project .cpp source file.

// The program queries the signal generator ID string and sets and queries the power

// level. Query results are printed to the screen. The default attributes e.g. 9600 baud,

// parity, 8 data bits,1 stop bit are used. These attributes can be changed using VISA

// functions.

//

// IMPORTANT: Set the signal generator BAUD rate to 9600 for this test

//**

#include <visa.h>

#include <stdio.h>

#include "StdAfx.h"

#include <stdlib.h>

#include <conio.h>

#define MAX_COUNT 200

int main (void)

{

ViStatusstatus; // Declares a type ViStatus variable

ViSessiondefaultRM, instr;// Declares type ViSession variables

ViUInt32retCount; // Return count for string I/O

ViCharbuffer[MAX_COUNT];// Buffer for string I/O

status = viOpenDefaultRM(&defaultRM);// Initializes the system

// Open communication with Serial Port 2

status = viOpen(defaultRM, "ASRL2::INSTR", VI_NULL, VI_NULL, &instr);
Chapter 2 123

Programming Examples
RS-232 Programming Examples
if(status){// If problems, then prompt user

printf("Could not open ViSession!\n");

printf("Check instruments and connections\n");

printf("\n");

exit(0);}

 // Set timeout for 5 seconds

viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

// Asks for sig gen ID string

 status = viWrite(instr, (ViBuf)"*IDN?\n", 6, &retCount);

// Reads the sig gen response

 status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0';// Indicates the end of the string

printf("Signal Generator ID: "); // Prints header for ID

printf(buffer);// Prints the ID string to the screen

printf("\n");// Prints carriage return

// Flush the read buffer

// Sets sig gen power to -5dbm

status = viWrite(instr, (ViBuf)"POW:AMPL -5dbm\n", 15, &retCount);

// Querys the sig gen for power level

status = viWrite(instr, (ViBuf)"POW?\n",5,&retCount);

// Read the power level

status = viRead(instr, (ViBuf)buffer, MAX_COUNT, &retCount);

buffer[retCount]= '\0';// Indicates the end of the string

printf("Power level = ");// Prints header to the screen

printf(buffer);// Prints the queried power level

printf("\n");

status = viClose(instr);// Close down the system

status = viClose(defaultRM);

return 0;

}

124 Chapter 2

3 Programming the Status Register System

This chapter provides the following major sections:

• “Overview” on page 126

• “Status Register Bit Values” on page 129

• “Accessing Status Register Information” on page 130

• “Status Byte Group” on page 135

• “Status Groups” on page 138
125

Programming the Status Register System
Overview
Overview

NOTE Some of the status bits and register groups do not apply to the E4428C:

• Standard Operation Condition Register bits (see Table 3-5 on page 142)
• Baseband Operation Status Group
• Data Questionable Condition Register bits (see Table 3-7 on page 148)
• Data Questionable Power Condition Register bit (see Table 3-8 on page 152)
• Data Questionable Frequency Condition Register bit (see Table 3-9 on page 155)
• Data Questionable Calibration Condition Register bit (see Table 3-11 on page 161)
• Data Questionable Bert Status Group

During remote operation, you may need to monitor the status of the signal generator for error conditions or
status changes. For more information on using the ESG’s SCPI commands to query the signal generator’s
error queue, refer to the ESG SCPI command reference guide, to see if any errors have occurred. An
alternative method uses the signal generator’s status register system to monitor error conditions, or condition
changes, or both.

The signal generator’s status register system provides two major advantages:

• You can monitor the settling of the signal generator using the settling bit of the Standard Operation
Status Group’s condition register.

• You can use the service request (SRQ) interrupt technique to avoid status polling, therefore giving a
speed advantage.

The signal generator’s instrument status system provides complete SCPI Standard data structures for
reporting instrument status using the register model.

The SCPI register model of the status system has multiple registers that are arranged in a hierarchical order.
The lower-priority status registers propagate their data to the higher-priority registers using summary bits.
The Status Byte Register is at the top of the hierarchy and contains the status information for lower level
registers. The lower level registers monitor specific events or conditions.

The lower level status registers are grouped according to their functionality. For example, the Data Quest.
Frequency Status Group consists of five registers. This chapter may refer to a group as a register so that the
cumbersome correct description is avoided. For example, the Standard Operation Status Group’s Condition
Register can be referred to as the Standard Operation Status register. Refer to “Status Groups” on page 138
for more information.

Figure 3-1 and Figure 3-2 show the signal generator’s status byte register system and hierarchy.

The status register system uses IEEE 488.2 commands (those beginning with *) to access the higher-level
summary registers. Lower-level registers can be accessed using STATus commands.
126 Chapter 3

Programming the Status Register System
Overview
Figure 3-1 The Overall Status Byte Register System (1 of 2)
Chapter 3 127

Programming the Status Register System
Overview
Figure 3-2 The Overall Status Byte Register System (2 of 2)
128 Chapter 3

Programming the Status Register System
Status Register Bit Values
Status Register Bit Values
Each bit in a register is represented by a decimal value based on its location in the register (see Table 3-1).

• To enable a particular bit in a register, send its value with the SCPI command. Refer to the signal
generator’s SCPI command listing for more information.

• To enable more than one bit, send the sum of all the bits that you want to enable.
• To verify the bits set in a register, query the register.

Example: Enable a Register

To enable bit 0 and bit 6 of the Standard Event Status Group’s Event Register:

1. Add the decimal value of bit 0 (1) and the decimal value of bit 6 (64) to give a decimal value of 65.

2. Send the sum with the command: *ESE 65.

Example: Query a Register

To query a register for a condition, send a SCPI query command. For example, if you want to query the
Standard Operation Status Group’s Condition Register, send the command:

STATus:OPERation:CONDition?

If bit 7, bit 3 and bit 2 in this register are set (bits=1) then the query will return the decimal value 140. The
value represents the decimal values of bit 7, bit 3 and bit 2: 128 + 8 + 4 = 140.

NOTE Bit 15 is not used and is always set to zero.

Table 3-1 Status Register Bit Decimal Values

Decimal
Value

A
lw

ay
s

0

16
38

4

81
92

40
96

20
48

10
24 51

2

25
6

12
8 64 32 16 8 4 2 1

Bit Number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Chapter 3 129

Programming the Status Register System
Accessing Status Register Information
Accessing Status Register Information
1. Determine which register contains the bit that reports the condition. Refer to Figure 3-1 on page 127 or

Figure 3-2 on page 128 for register location and names.
2. Send the unique SCPI query that reads that register.
3. Examine the bit to see if the condition has changed.

Determining What to Monitor
You can monitor the following conditions:

• current signal generator hardware and firmware status
• whether a particular condition (bit) has occurred

Monitoring Current Signal Generator Hardware and Firmware Status

To monitor the signal generator’s operating status, you can query the condition registers. These registers
represent the current state of the signal generator and are updated in real time. When the condition
monitored by a particular bit becomes true, the bit sets to 1. When the condition becomes false, the bit resets
to 0.

Monitoring Whether a Condition (Bit) has Changed

The transition registers determine which bit transition (condition change) should be recorded as an event.
The transitions can be positive to negative, negative to positive, or both. To monitor a certain condition,
enable the bit associated with the condition in the associated positive and negative registers.

Once you have enabled a bit via the transition registers, the signal generator monitors it for a change in its
condition. If this change in condition occurs, the corresponding bit in the event register will be set to 1.
When a bit becomes true (set to 1) in the event register, it stays set until the event register is read or is
cleared. You can thus query the event register for a condition even if that condition no longer exists.

The event register can be cleared only by querying its contents or sending the *CLS command, which clears
all event registers.

Monitoring When a Condition (Bit) Changes

Once you enable a bit, the signal generator monitors it for a change in its condition. The transition registers
are preset to register positive transitions (a change going from 0 to 1). This can be changed so the selected
bit is detected if it goes from true to false (negative transition), or if either transition occurs.
130 Chapter 3

Programming the Status Register System
Accessing Status Register Information
Deciding How to Monitor
You can use either of two methods described below to access the information in status registers (both
methods allow you to monitor one or more conditions).

• The polling method

In the polling method, the signal generator has a passive role. It tells the controller that conditions have
changed only when the controller asks the right question. This is accomplished by a program loop that
continually sends a query.

The polling method works well if you do not need to know about changes the moment they occur. Use
polling in the following situations:

— when you use a programming language/development environment or I/O interface that does not
support SRQ interrupts

— when you want to write a simple, single-purpose program and don’t want the added complexity of
setting up an SRQ handler

• The service request (SRQ) method

In the SRQ method (described in the following section), the signal generator takes a more active role. It
tells the controller when there has been a condition change without the controller asking.

Use the SRQ method if you must know immediately when a condition changes. (To detect a change
using the polling method, the program must repeatedly read the registers.) Use the SRQ method in the
following situations:

— when you need time-critical notification of changes
— when you are monitoring more than one device that supports SRQs
— when you need to have the controller do something else while waiting
— when you can’t afford the performance penalty inherent to polling

Using the Service Request (SRQ) Method

The programming language, I/O interface, and programming environment must support SRQ interrupts (for
example: BASIC or VISA used with GPIB and VXI-11 over the LAN). Using this method, you must do the
following:

1. Determine which bit monitors the condition.

2. Send commands to enable the bit that monitors the condition (transition registers).

3. Send commands to enable the summary bits that report the condition (event enable registers).

4. Send commands to enable the status byte register to monitor the condition.

5. Enable the controller to respond to service requests.
Chapter 3 131

Programming the Status Register System
Accessing Status Register Information
The controller responds to the SRQ as soon as it occurs. As a result, the time the controller would otherwise
have used to monitor the condition, as in a loop method, can be used to perform other tasks. The application
determines how the controller responds to the SRQ.

When a condition changes and that condition has been enabled, the RQS bit in the status byte register is set.
In order for the controller to respond to the change, the Service Request Enable Register needs to be enabled
for the bit(s) that will trigger the SRQ.

Generating a Service Request

 The Service Request Enable Register lets you choose the bits in the Status Byte Register that will trigger a
service request. Send the *SRE <num> command where <num> is the sum of the decimal values of the bits
you want to enable.

For example, to enable bit 7 on the Status Byte Register (so that whenever the Standard Operation Status
register summary bit is set to 1, a service request is generated) send the command *SRE 128. Refer to Figure
3-1 on page 127 or Figure 3-2 on page 128 for bit positions and values.

The query command *SRE? returns the decimal value of the sum of the bits previously enabled with the
*SRE <num> command.

To query the Status Byte Register, send the command *STB?. The response will be the decimal sum of the
bits which are set to 1. For example, if bit 7 and bit 3 are set, the decimal sum will be 136 (bit 7=128 and
bit 3=8).

NOTE Multiple Status Byte Register bits can assert an SRQ, however only one bit at a time can set
the RQS bit. All bits that are asserting an SRQ will be read as part of the status byte when it
is queried or serial polled.

The SRQ process asserts SRQ as true and sets the status byte’s RQS bit to 1. Both actions are necessary to
inform the controller that the signal generator requires service. Asserting SRQ informs the controller that
some device on the bus requires service. Setting the RQS bit allows the controller to determine which signal
generator requires service.

This process is initiated if both of the following conditions are true:

• The corresponding bit of the Service Request Enable Register is also set to 1.

• The signal generator does not have a service request pending.

A service request is considered to be pending between the time the signal generator’s SRQ process is
initiated and the time the controller reads the status byte register.

If a program enables the controller to detect and respond to service requests, it should instruct the controller
to perform a serial poll when SRQ is true. Each device on the bus returns the contents of its status byte
register in response to this poll. The device whose request service summary bit (RQS) bit is set to 1 is the
device that requested service.
132 Chapter 3

Programming the Status Register System
Accessing Status Register Information
NOTE When you read the signal generator’s Status Byte Register with a serial poll, the RQS bit is
reset to 0. Other bits in the register are not affected.

If the status register is configured to SRQ on end-of-sweep or measurement and the mode
set to continuous, restarting the measurement (INIT command) can cause the measuring bit
to pulse low. This causes an SRQ when you have not actually reached the “end-of-sweep”
or measurement condition. To avoid this, do the following:

1. Send the command INITiate:CONTinuous OFF.

2. Set/enable the status registers.

3. Restart the measurement (send INIT).

Status Register SCPI Commands
Most monitoring of signal generator conditions is done at the highest level, using the IEEE 488.2 common
commands listed below. You can set and query individual status registers using the commands in the STATus
subsystem.

*CLS (clear status) clears the Status Byte Register by emptying the error queue and clearing all the event
registers.

*ESE, *ESE? (event status enable) sets and queries the bits in the Standard Event Enable Register which
is part of the Standard Event Status Group.

*ESR? (event status register) queries and clears the Standard Event Status Register which is part of the
Standard Event Status Group.

*OPC, *OPC? (operation complete) sets bit #0 in the Standard Event Status Register to 1 when all
commands have completed. The query stops any new commands from being processed until the current
processing is complete, then returns a 1.

*PSC, *PSC? (power-on state clear) sets the power-on state so that it clears the Service Request Enable
Register, the Standard Event Status Enable Register, and device-specific event enable registers at power
on. The query returns the flag setting from the *PSC command.

*SRE, *SRE? (service request enable) sets and queries the value of the Service Request Enable Register.

*STB? (status byte) queries the value of the status byte register without erasing its contents.

:STATus:PRESet presets all transition filters, non-IEEE 488.2 enable registers, and error/event queue
enable registers. (Refer to Table 3-2.)
Chapter 3 133

Programming the Status Register System
Accessing Status Register Information
Table 3-2 Effects of :STATus:PRESet

Register Value after
:STATus:PRESet

:STATus:OPERation:ENABle 0

:STATus:OPERation:NTRansition 0

:STATus:OPERation:PTRransition 32767

:STATus:OPERation:BASeband:ENABle 0

:STATus:OPERation:BASeband:NTRansition 0

:STATus:OPERation:BASeband:PTRransition 32767

:STATus:QUEStionable:CALibration:ENABle 32767

:STATus:QUEStionable:CALibration:NTRansition 32767

:STATus:QUEStionable:CALibration:PTRansition 32767

:STATus:QUEStionable:ENABle 0

:STATus:QUEStionable:NTRansition 0

:STATus:QUEStionable:PTRansition 32767

:STATus:QUEStionable:FREQuency:ENABle 32767

:STATus:QUEStionable:FREQuency:NTRansition 32767

:STATus:QUEStionable:FREQuency:PTRansition 32767

:STATus:QUEStionable:MODulation:ENABle 32767

:STATus:QUEStionable:MODulation:NTRansition 32767

:STATus:QUEStionable:MODulation:PTRansition 32767

:STATus:QUEStionable:POWer:ENABle 32767

:STATus:QUEStionable:POWer:NTRansition 32767

:STATus:QUEStionable:POWer:PTRansition 32767

:STATus:QUEStionable:BERT:ENABle 32767

:STATus:QUEStionable:BERT:NTRansition 32767

:STATus:QUEStionable:BERT:PTRansition 32767
134 Chapter 3

Programming the Status Register System
Status Byte Group
Status Byte Group
The Status Byte Group includes the Status Byte Register and the Service Request Enable Register.
Chapter 3 135

Programming the Status Register System
Status Byte Group
Status Byte Register
Table 3-3 Status Byte Register Bits

Bit Description

0,1 Unused. These bits are always set to 0.

2 Error/Event Queue Summary Bit. A 1 in this bit position indicates that the SCPI error queue is not empty.
The SCPI error queue contains at least one error message.

3 Data Questionable Status Summary Bit. A 1 in this bit position indicates that the Data Questionable
summary bit has been set. The Data Questionable Event Register can then be read to determine the specific
condition that caused this bit to be set.

4 Message Available. A 1 in this bit position indicates that the signal generator has data ready in the output
queue. There are no lower status groups that provide input to this bit.

5 Standard Event Status Summary Bit. A 1 in this bit position indicates that the Standard Event summary bit
has been set. The Standard Event Status Register can then be read to determine the specific event that caused
this bit to be set.

6 Request Service (RQS) Summary Bit. A 1 in this bit position indicates that the signal generator has at least
one reason to require service. This bit is also called the Master Summary Status bit (MSS). The individual bits
in the Status Byte are individually ANDed with their corresponding service request enable register, then each
individual bit value is ORed and input to this bit.

7 Standard Operation Status Summary Bit. A 1 in this bit position indicates that the Standard Operation
Status Group’s summary bit has been set. The Standard Operation Event Register can then be read to
determine the specific condition that caused this bit to be set.

Query: *STB?

Response: The decimal sum of the bits set to 1 including the master summary status bit (MSS) bit 6.

Example: The decimal value 136 is returned when the MSS bit is set low (0).

Decimal sum = 128 (bit 7) + 8 (bit 3)

The decimal value 200 is returned when the MSS bit is set high (1).

Decimal sum = 128 (bit 7) + 8 (bit 3) + 64 (MSS bit)
136 Chapter 3

Programming the Status Register System
Status Byte Group
Service Request Enable Register
The Service Request Enable Register lets you choose which bits in the Status Byte Register trigger a service
request.

*SRE <data> <data> is the sum of the decimal values of the bits you want to enable except bit 6. Bit 6
cannot be enabled on this register. Refer to Figure 3-1 on page 127 or Figure 3-2 on
page 128.

Example: To enable bits 7 and 5 to trigger a service request when either corresponding status group
register summary bit sets to 1. Send the command *SRE 160 (128 + 32).

Query: *SRE?

Response: The decimal value of the sum of the bits previously enabled with the *SRE <data>
command.
Chapter 3 137

Programming the Status Register System
Status Groups
Status Groups
The Standard Operation Status Group and the Data Questionable Status Group consist of the registers listed
below. The Standard Event Status Group is similar but does not have negative or positive transition filters or
a condition register.

Condition
Register A condition register continuously monitors the hardware and firmware status of the

signal generator. There is no latching or buffering for a condition register; it is updated
in real time.

Negative
Transition
Filter A negative transition filter specifies the bits in the condition register that will set

corresponding bits in the event register when the condition bit changes from 1 to 0.

Positive
Transition
Filter A positive transition filter specifies the bits in the condition register that will set

corresponding bits in the event register when the condition bit changes from 0 to 1.

Event
Register An event register latches transition events from the condition register as specified by the

positive and negative transition filters. Once the bits in the event register are set, they
remain set until cleared by either querying the register contents or sending the *CLS
command.

Event
Enable
Register An enable register specifies the bits in the event register that generate the summary bit.

The signal generator logically ANDs corresponding bits in the event and enable
registers and ORs all the resulting bits to produce a summary bit. Summary bits are, in
turn, used by the Status Byte Register.

A status group is a set of related registers whose contents are programmed to produce status summary bits.
In each status group, corresponding bits in the condition register are filtered by the negative and positive
transition filters and stored in the event register. The contents of the event register are logically ANDed with
the contents of the enable register and the result is logically ORed to produce a status summary bit in the
Status Byte Register.
138 Chapter 3

Programming the Status Register System
Status Groups
Standard Event Status Group
The Standard Event Status Group is used to determine the specific event that set bit 5 in the Status Byte
Register. This group consists of the Standard Event Status Register (an event register) and the Standard
Event Status Enable Register.
Chapter 3 139

Programming the Status Register System
Status Groups
Standard Event Status Register

Standard Event Status Enable Register

The Standard Event Status Enable Register lets you choose which bits in the Standard Event Status Register
set the summary bit (bit 5 of the Status Byte Register) to 1.

Table 3-4 Standard Event Status Register Bits

Bit Description

0 Operation Complete. A 1 in this bit position indicates that all pending signal generator operations were
completed following execution of the *OPC command.

1 Request Control. This bit is always set to 0. (The signal generator does not request control.)

2 Query Error. A 1 in this bit position indicates that a query error has occurred. Query errors have SCPI error
numbers from −499 to −400.

3 Device Dependent Error. A 1 in this bit position indicates that a device dependent error has occurred. Device
dependent errors have SCPI error numbers from −399 to −300 and 1 to 32767.

4 Execution Error. A 1 in this bit position indicates that an execution error has occurred. Execution errors have
SCPI error numbers from −299 to −200.

5 Command Error. A 1 in this bit position indicates that a command error has occurred. Command errors have
SCPI error numbers from −199 to −100.

6 User Request Key (Local). A 1 in this bit position indicates that the Local key has been pressed. This is true
even if the signal generator is in local lockout mode.

7 Power On. A 1 in this bit position indicates that the signal generator has been turned off and then on.

Query: *ESR?

Response: The decimal sum of the bits set to 1

Example: The decimal value 136 is returned. The decimal sum = 128 (bit 7) + 8 (bit 3).

*ESE <data> <data> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 7 and bit 6 so that whenever either of those bits are set to 1, the Standard
Event Status summary bit of the Status Byte Register is set to 1. Send the command *ESE
192 (128 + 64).

Query: *ESE?

Response: Decimal value of the sum of the bits previously enabled with the *ESE <data>
command.
140 Chapter 3

Programming the Status Register System
Status Groups
Standard Operation Status Group

NOTE Some of the bits in this status group do not apply to the E4428C and will return a zero when
queried. See Table 3-5 on page 142 for more information.

The Operation Status Group is used to determine the specific event that set bit 7 in the Status Byte Register.
This group consists of the Standard Operation Condition Register, the Standard Operation Transition Filters
(negative and positive), the Standard Operation Event Register, and the Standard Operation Event Enable
Register.
Chapter 3 141

Programming the Status Register System
Status Groups
Standard Operation Condition Register

The Standard Operation Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Table 3-5 Standard Operation Condition Register Bits

Bit Description

0a

a. On the E4428C, this bit is set to 0.

I/Q Calibrating. A 1 in this position indicates an I/Q calibration is in process.

1 Settling. A 1 in this bit position indicates that the signal generator is settling.

2 Unused. This bit position is set to 0.

3 Sweeping. A 1 in this bit position indicates that a sweep is in progress.

4a Measuring. A1 in this bit position indicates that a bit error rate test is in progress

5 Waiting for Trigger. A 1 in this bit position indicates that the source is in a “wait for trigger” state.
When option 300 is enabled, a 1 in this bit position indicates that TCH/PDCH synchronization is
established and waiting for a trigger to start measurements.

6,7,8 Unused. These bits are always set to 0.

9 DCFM/DCφM Null in Progress. A 1 in this bit position indicates that the signal generator is
currently performing a DCFM/DCΦM zero calibration.

10a Baseband is Busy. A 1 in this bit position indicates that the baseband generator is communicating or
processing. This is a summary bit. See the “Baseband Operation Status Group” on page 144 for more
information.

11 Sweep Calculating. A 1 in this bit position indicates that the signal generator is currently doing the
necessary pre-sweep calculations.

12a BERT Synchronizing. A 1 in this bit position is set while the BERT is synchronizing to ‘BCH’, then
‘TCH’ and then to ‘PRBS’.

12, 13, 14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:OPERation:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).
142 Chapter 3

Programming the Status Register System
Status Groups
Standard Operation Transition Filters (negative and positive)

The Standard Operation Transition Filters specify which types of bit state changes in the condition register
set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Standard Operation Event Register

The Standard Operation Event Register latches transition events from the condition register as specified by
the transition filters. Event registers are destructive read only. Reading data from an event register clears the
content of that register.

Standard Operation Event Enable Register

The Standard Operation Event Enable Register lets you choose which bits in the Standard Operation Event
Register set the summary bit (bit 7 of the Status Byte Register) to 1

Commands: STATus:OPERation:NTRansition <value> (negative transition), or
STATus:OPERation:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:OPERation:NTRansition?

STATus:OPERation:PTRansition?

Query: STATus:OPERation[:EVENt]?

Command: STATus:OPERation:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Standard
Operation Status summary bit of the Status Byte Register is set to 1. Send the command
STAT:OPER:ENAB 520 (512 + 8).

Query: STATus:OPERation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:OPERation:ENABle <value> command.
Chapter 3 143

Programming the Status Register System
Status Groups
Baseband Operation Status Group

NOTE This status group does not apply to the E4428C, and if queried will return a zero.

The Baseband Operation Status Group is used to determine the specific event that set bit 10 in the Standard
Operation Status Group. This group consists of the Baseband Operation Condition Register, the Baseband
Operation Transition Filters (negative and positive), the Baseband Operation Event Register, and the
Baseband Operation Event Enable Register.
144 Chapter 3

Programming the Status Register System
Status Groups
Baseband Operation Condition Register

The Baseband Operation Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Baseband Operation Transition Filters (negative and positive)

The Baseband Operation Transition Filters specify which types of bit state changes in the condition register
set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Table 3-6 Baseband Operation Condition Register Bits

Bit Description

0 Baseband 1 Busy. A 1 in this position indicates the signal generator baseband is active.

1 Baseband 1 Communicating. A 1 in this bit position indicates that the signal generator baseband
generator is handling data I/O.

2–14 Unused. This bit position is set to 0.

15 Always 0.

Query: STATus:OPERation:BASeband:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 2 is returned. The decimal sum = 2 (bit 1).

Commands: STATus:OPERation:BASeband:NTRansition <value> (negative transition), or
STATus:OPERation:BASeband:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:OPERation:BASeband:NTRansition?

STATus:OPERation:BASeband:PTRansition?
Chapter 3 145

Programming the Status Register System
Status Groups
Baseband Operation Event Register

The Baseband Operation Event Register latches transition events from the condition register as specified by
the transition filters. Event registers are destructive read only. Reading data from an event register clears the
content of that register.

Baseband Operation Event Enable Register

The Baseband Operation Event Enable Register lets you choose which bits in the Baseband Operation Event
Register can set the summary bit (bit 7 of the Status Byte Register).

Query: STATus:OPERation:BASeband[:EVENt]?

Command: STATus:OPERation:BASeband:ENABle <value>, where
<value> is the sum of the decimal values of the bits you want to enable.

Example: To enable bit 0 and bit 1 so that whenever either of those bits are set to 1, the Baseband
Operation Status summary bit of the Status Byte Register is set to 1. Send the command
STAT:OPER:ENAB 520 (512 + 8).

Query: STATus:OPERation:BASeband:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:OPERation:BASeband:ENABle <value> command.
146 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Status Group

NOTE Some of the bits in this status group do not apply to the E4428C and will return a zero when
queried. See Table 3-7 on page 148 for more information.

The Data Questionable Status Group is used to determine the specific event that set bit 3 in the Status Byte
Register. This group consists of the Data Questionable Condition Register, the Data Questionable Transition
Filters (negative and positive), the Data Questionable Event Register, and the Data Questionable Event
Enable Register.
Chapter 3 147

Programming the Status Register System
Status Groups
Data Questionable Condition Register

The Data Questionable Condition Register continuously monitors the hardware and firmware status of the
signal generator. Condition registers are read only.

Table 3-7 Data Questionable Condition Register Bits

Bit Description

0, 1, 2 Unused. These bits are always set to 0.

3 Power (summary). This is a summary bit taken from the QUEStionable:POWer register. A 1 in this bit
position indicates that one of the following may have happened: The ALC (Automatic Leveling
Control) is unable to maintain a leveled RF output power (i.e., ALC is UNLEVELED), the reverse
power protection circuit has been tripped. See the “Data Questionable Power Status Group” on
page 151 for more information.

4 Temperature (OVEN COLD). A 1 in this bit position indicates that the internal reference oscillator
(reference oven) is cold.

5 Frequency (summary). This is a summary bit taken from the QUEStionable:FREQuency register. A 1
in this bit position indicates that one of the following may have happened: synthesizer PLL unlocked,
10 MHz reference VCO PLL unlocked, 1 GHz reference unlocked, sampler, YO loop unlocked or
baseband 1 unlocked. For more information, see the “Data Questionable Frequency Status Group” on
page 154.

6 Unused. This bit is always set to 0.

7 Modulation (summary). This is a summary bit taken from the QUEStionable:MODulation register. A
1 in this bit position indicates that one of the following may have happened: modulation source 1
underrange, modulation source 1 overrange, modulation source 2 underrange, modulation source 2
overrange, modulation uncalibrated. See the “Data Questionable Modulation Status Group” on
page 157 for more information.

8a Calibration (summary). This is a summary bit taken from the QUEStionable:CALibration register. A
1 in this bit position indicates that one of the following may have happened: an error has occurred in
the DCFM/DCΦM zero calibration, an error has occurred in the I/Q calibration. See the “Data
Questionable Calibration Status Group” on page 160 for more information.

9 Self Test. A 1 in this bit position indicates that a self-test has failed during power-up. This bit can only
be cleared by cycling the signal generator’s line power. *CLS will not clear this bit.

10, 11 Unused. These bits are always set to 0.

12b BERT (summary). This is a summary bit taken from the QUEStionable:BERT register. A 1 in this bit
position indicates that one of the following occurred: no BCH/TCH synchronization, no data change,
no clock input, PRBS not synchronized, demod/DSP unlocked or demod unleveled. See the “Data
Questionable BERT Status Group” on page 163 for more information.
148 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Transition Filters (negative and positive)

The Data Questionable Transition Filters specify which type of bit state changes in the condition register set
corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Data Questionable Event Register

The Data Questionable Event Register latches transition events from the condition register as specified by
the transition filters. Event registers are destructive read-only. Reading data from an event register clears the
content of that register.

13, 14 Unused. These bits are set to 0.

15 Always 0.

a. On the E4428C, this bit applies only to the DCFM/DCΦM calibration.
b. On the E4428C, this bit is set to 0.

Query: STATus:QUEStionable:CONDition?

Response: The decimal sum of the bits set to 1

Example: The decimal value 520 is returned. The decimal sum = 512 (bit 9) + 8 (bit 3).

Commands: STATus:QUEStionable:NTRansition <value> (negative transition), or
STATus:QUEStionable:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:NTRansition?

STATus:QUEStionable:PTRansition?

Query: STATus:QUEStionable[:EVENt]?

Table 3-7 Data Questionable Condition Register Bits

Bit Description
Chapter 3 149

Programming the Status Register System
Status Groups
Data Questionable Event Enable Register

The Data Questionable Event Enable Register lets you choose which bits in the Data Questionable Event
Register set the summary bit (bit 3 of the Status Byte Register) to 1.

Command: STATus:QUEStionable:ENABle <value> command where <value> is the sum of the
decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Status summary bit of the Status Byte Register is set to 1. Send the command
STAT:QUES:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:ENABle <value> command.
150 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Power Status Group

NOTE There are two conditions when a bit from this status group does not apply and returns a zero
when queried. For more information, see Table 3-8 on page 152.

The Data Questionable Power Status Group is used to determine the specific event that set bit 3 in the Data
Questionable Condition Register. This group consists of the Data Questionable Power Condition Register,
the Data Questionable Power Transition Filters (negative and positive), the Data Questionable Power Event
Register, and the Data Questionable Power Event Enable Register.
Chapter 3 151

Programming the Status Register System
Status Groups
Data Questionable Power Condition Register

The Data Questionable Power Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Data Questionable Power Transition Filters (negative and positive)

The Data Questionable Power Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Table 3-8 Data Questionable Power Condition Register Bits

Bit Description

0a

a. On the E4428C/38C with Option 506, this bit is set to 0.

Reverse Power Protection Tripped. A 1 in this bit position indicates that the reverse power protection
(RPP) circuit has been tripped. There is no output in this state. Any conditions that may have caused the
problem should be corrected. The RPP circuit can be reset by sending the remote SCPI command:
OUTput:PROTection:CLEar. Resetting the RPP circuit bit, will reset this bit to 0.

1 Unleveled. A 1 in this bit indicates that the output leveling loop is unable to set the output power.

2b

b. On the E4428C, this bit is set to 0.

IQ Mod Overdrive. A 1 in this bit indicates that the signal level into the IQ modulator is too large.

3 Lowband Detector Fault. A 1 in this bit indicates that the lowband detector heater circuit has failed.

2−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:POWer:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:POWer:NTRansition <value> (negative transition), or
STATus:QUEStionable:POWer:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:POWer:NTRansition?
STATus:QUEStionable:POWer:PTRansition?
152 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Power Event Register

The Data Questionable Power Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Data Questionable Power Event Enable Register

The Data Questionable Power Event Enable Register lets you choose which bits in the Data Questionable
Power Event Register set the summary bit (bit 3 of the Data Questionable Condition Register) to 1.

Query: STATus:QUEStionable:POWer[:EVENt]?

Command: STATus:QUEStionable:POWer:ENABle <value> command where <value> is the sum
of the decimal values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Power summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT:QUES:POW:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:POWer:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:POWer:ENABle <value> command.
Chapter 3 153

Programming the Status Register System
Status Groups
Data Questionable Frequency Status Group

NOTE A bit in this status group does not apply to the E4428C and will return a zero when queried.
See Table 3-9 on page 155 for more information.

The Data Questionable Frequency Status Group is used to determine the specific event that set bit 5 in the
Data Questionable Condition Register. This group consists of the Data Questionable Frequency Condition
Register, the Data Questionable Frequency Transition Filters (negative and positive), the Data Questionable
Frequency Event Register, and the Data Questionable Frequency Event Enable Register.
154 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Frequency Condition Register

The Data Questionable Frequency Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read-only.

Data Questionable Frequency Transition Filters (negative and positive)

Specifies which types of bit state changes in the condition register set corresponding bits in the event
register. Changes can be positive (0 to 1) or negative (1 to 0).

Table 3-9 Data Questionable Frequency Condition Register Bits

Bit Description

0 Synth. Unlocked. A 1 in this bit indicates that the synthesizer is unlocked.

1 10 MHz Ref Unlocked. A 1 in this bit indicates that the 10 MHz reference signal is unlocked.

2 1 Ghz Ref Unlocked. A 1 in this bit indicates that the 1 Ghz reference signal is unlocked.

3a

a. On the E4428C, this bit is set to 0.

Baseband 1 Unlocked. A 1 in this bit indicates that the baseband 1 generator is unlocked.

4 Unused. This bit is set to 0.

5 Sampler Loop Unlocked. A 1 in this bit indicates that the sampler loop is unlocked.

6 YO Loop Unlocked. A 1 in this bit indicates that the YO loop is unlocked.

7−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:FREQuency:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:FREQuency:NTRansition <value> (negative transition) or
STATus:QUEStionable:FREQuency:PTRansition <value> (positive transition)
where <value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:FREQuency:NTRansition?

STATus:QUEStionable:FREQuency:PTRansition?
Chapter 3 155

Programming the Status Register System
Status Groups
Data Questionable Frequency Event Register

Latches transition events from the condition register as specified by the transition filters. Event registers are
destructive read-only. Reading data from an event register clears the content of that register.

Data Questionable Frequency Event Enable Register

Lets you choose which bits in the Data Questionable Frequency Event Register set the summary bit (bit 5 of
the Data Questionable Condition Register) to 1.

Query: STATus:QUEStionable:FREQuency[:EVENt]?

Command: STATus:QUEStionable:FREQuency:ENABle <value>, where <value> is the sum of
the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Frequency summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT:QUES:FREQ:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:FREQuency:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:FREQuency:ENABle <value> command.
156 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Modulation Status Group
The Data Questionable Modulation Status Group is used to determine the specific event that set bit 7 in the
Data Questionable Condition Register. This group consists of the Data Questionable Modulation Condition
Register, the Data Questionable Modulation Transition Filters (negative and positive), the Data
Questionable Modulation Event Register, and the Data Questionable Modulation Event Enable Register.
Chapter 3 157

Programming the Status Register System
Status Groups
Data Questionable Modulation Condition Register

The Data Questionable Modulation Condition Register continuously monitors the hardware and firmware
status of the signal generator. Condition registers are read-only.

Data Questionable Modulation Transition Filters (negative and positive)

The Data Questionable Modulation Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Table 3-10 Data Questionable Modulation Condition Register Bits

Bit Description

0 Modulation 1 Undermod. A 1 in this bit indicates that the External 1 input, ac coupling on, is less than
0.97 volts.

1 Modulation 1 Overmod. A 1 in this bit indicates that the External 1 input, ac coupling on, is more than
1.03 volts.

2 Modulation 2 Undermod. A 1 in this bit indicates that the External 2 input, ac coupling on, is less than
0.97 volts.

3 Modulation 2 Overmod. A 1 in this bit indicates that the External 2 input, ac coupling on, is more than
1.03 volts.

4 Modulation Uncalibrated. A 1 in this bit indicates that modulation is uncalibrated.

5−14 Unused. This bit is always set to 0.

15 Always 0.

Query: STATus:QUEStionable:MODulation:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:MODulation:NTRansition <value> (negative transition),
or STATus:QUEStionable:MODulation:PTRansition <value> (positive
transition), where <value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:MODulation:NTRansition?
STATus:QUEStionable:MODulation:PTRansition?
158 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Modulation Event Register

The Data Questionable Modulation Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Data Questionable Modulation Event Enable Register

The Data Questionable Modulation Event Enable Register lets you choose which bits in the Data
Questionable Modulation Event Register set the summary bit (bit 7 of the Data Questionable Condition
Register) to 1.

Query: STATus:QUEStionable:MODulation[:EVENt]?

Command: STATus:QUEStionable:MODulation:ENABle <value> command where <value> is
the sum of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Modulation summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT:QUES:MOD:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:MODulation:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:MODulation:ENABle <value> command.
Chapter 3 159

Programming the Status Register System
Status Groups
Data Questionable Calibration Status Group

NOTE A bit in this status group does not apply to the E4428C and will return a zero when queried.
See Table 3-11 on page 161 for more information.

The Data Questionable Calibration Status Group is used to determine the specific event that set bit 8 in the
Data Questionable Condition Register. This group consists of the Data Questionable Calibration Condition
Register, the Data Questionable Calibration Transition Filters (negative and positive), the Data Questionable
Calibration Event Register, and the Data Questionable Calibration Event Enable Register.
160 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable Calibration Condition Register

The Data Questionable Calibration Condition Register continuously monitors the calibration status of the
signal generator. Condition registers are read only.

Data Questionable Calibration Transition Filters (negative and positive)

The Data Questionable Calibration Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Data Questionable Calibration Event Register

The Data Questionable Calibration Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Table 3-11 Data Questionable Calibration Condition Register Bits

Bit Description

0 DCFM/DCΦM Zero Failure. A 1 in this bit indicates that the DCFM/DCΦM zero calibration routine has
failed. This is a critical error. The output of the source has no validity until the condition of this bit is 0.

1a

a. On the E4428C, this bit is set to 0.

I/Q Calibration Failure. A 1 in this bit indicates that the I/Q modulation calibration experienced a failure.

2−14 Unused. These bits are always set to 0.

15 Always 0.

Query: STATus:QUEStionable:CALibration:CONDition?

Response: The decimal sum of the bits set to 1

Commands: STATus:QUEStionable:CALibration:NTRansition <value> (negative transition),
or STATus:QUEStionable:CALibration:PTRansition <value> (positive
transition), where <value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:CALibration:NTRansition?
STATus:QUEStionable:CALibration:PTRansition?

Query: STATus:QUEStionable:CALibration[:EVENt]?
Chapter 3 161

Programming the Status Register System
Status Groups
Data Questionable Calibration Event Enable Register

The Data Questionable Calibration Event Enable Register lets you choose which bits in the Data
Questionable Calibration Event Register set the summary bit (bit 8 of the Data Questionable Condition
register) to 1.

Command: STATus:QUEStionable:CALibration:ENABle <value>, where <value> is the sum
of the decimal values of the bits you want to enable.

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
Calibration summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT:QUES:CAL:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:CALibration:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:CALibration:ENABle <value> command.
162 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable BERT Status Group

NOTE This status group does not apply to the E4428C, and if queried will return a zero.

The Data Questionable BERT Status Group is used to determine the specific event that set bit 12 in the Data
Questionable Condition Register. The Data Questionable Status group consists of the Data Questionable
BERT Condition Register, the Data Questionable BERT Transition Filters (negative and positive), the Data
Questionable BERT Event Register, and the Data Questionable BERT Event Enable Register.
Chapter 3 163

Programming the Status Register System
Status Groups
Data Questionable BERT Condition Register

The Data Questionable BERT Condition Register continuously monitors the hardware and firmware status
of the signal generator. Condition registers are read only.

Table 3-12 Data Questionable BERT Condition Register Bits

Bit Description

0 No Clock. A 1 in this bit indicates no clock input for more than 3 seconds.

1 No Data Change. A 1 in this bit indicates no data change occurred during the last 200 clock signals.

2 PRBS Sync Loss. A 1 is set while PRBS synchronization is not established. *RST sets the bit to zero.

3−10 Unused. These bits are always set to 0.

11 Down conv. / Demod Unlocked. A 1 in this bit indicates that either the demodulator or the down converter
is out of lock.

12 Demod DSP Ampl out of range. A 1 in this bit indicates the demodulator amplitude is out of range. The
*RST command will set this bit to zero (0).

13 Sync. to BCH/TCH/PDCH. If the synchronization source is BCH, a 1 in this bit indicates BCH
synchronization is not established it does not indicate the TCH/PDCH synchronization status. If the sync
source is TCH or PDCH, a 1 in this bit indicates that TCH or PDCH synchronization is not established.
*RST sets the bit to zero.

14 Waiting for TCH/PDCH. A 1 in this bit indicates that a TCH or PDCH midamble has not been received.
This bit is set when bit 13 is set. The bit is also set when the TCH or PDCH synchronization was once locked
and then lost (in this case the front panel displays “WAITING FOR TCH (or PDCH)”. *RST set the bit to
zero.

15 Always 0.

Query: STATus:QUEStionable:BERT:CONDition?

Response: The decimal sum of the bits set to 1
164 Chapter 3

Programming the Status Register System
Status Groups
Data Questionable BERT Transition Filters (negative and positive)

The Data Questionable BERT Transition Filters specify which type of bit state changes in the condition
register set corresponding bits in the event register. Changes can be positive (0 to 1) or negative (1 to 0).

Data Questionable BERT Event Register

The Data Questionable BERT Event Register latches transition events from the condition register as
specified by the transition filters. Event registers are destructive read-only. Reading data from an event
register clears the content of that register.

Data Questionable BERT Event Enable Register

The Data Questionable BERT Event Enable Register lets you choose which bits in the Data Questionable
BERT Event Register set the summary bit (bit 3 of the Data Questionable Condition Register) to 1.

Commands: STATus:QUEStionable:BERT:NTRansition <value> (negative transition), or
STATus:QUEStionable:BERT:PTRansition <value> (positive transition), where
<value> is the sum of the decimal values of the bits you want to enable.

Queries: STATus:QUEStionable:BERT:NTRansition?
STATus:QUEStionable:BERT:PTRansition?

Query: STATus:QUEStionable:BERT[:EVENt]?

Command: STATus:QUEStionable:BERT:ENABle <value> command where <value> is the sum
of the decimal values of the bits you want to enable

Example: Enable bit 9 and bit 3 so that whenever either of those bits are set to 1, the Data Questionable
BERT summary bit of the Data Questionable Condition Register is set to 1. Send the
command STAT:QUES:BERT:ENAB 520 (512 + 8).

Query: STATus:QUEStionable:BERT:ENABle?

Response: Decimal value of the sum of the bits previously enabled with the
STATus:QUEStionable:BERT:ENABle <value> command.
Chapter 3 165

Programming the Status Register System
Status Groups
166 Chapter 3

4 Creating and Downloading Waveform Files

This chapter explains how to create Arb-based waveform data and download it into the signal generator:

• “Overview” on page 168

• “Understanding Waveform Data” on page 170

• “Waveform Structure” on page 178

• “Waveform Phase Continuity” on page 181

• “Waveform Memory” on page 184

• “Commands for Downloading and Extracting Waveform Data” on page 186

• “Creating Waveform Data” on page 193

• “Downloading Waveform Data” on page 200

• “Loading, Playing, and Verifying a Downloaded Waveform” on page 207

• “Using the Download Utilities” on page 210

• “Downloading E443xB Signal Generator Files” on page 211

• “Programming Examples” on page 214

• “Troubleshooting Waveform Files” on page 265
167

Creating and Downloading Waveform Files
Overview
Overview

NOTE Creating and downloading waveform data is available only in E4438C ESG Vector Signal
Generators with Option 001/601 or 002/602.

The signal generator lets you download and extract waveform files. You can create these files either external
to the signal generator or by using one of the internal modulation formats. The signal generator also accepts
waveforms files created for the earlier E443xB ESG signal generator models. For file extractions, the signal
generator encrypts the waveform file information. The exception to encrypted file extraction is user-created
I/Q data. The signal generator lets you extract this type of file unencrypted. After extracting a waveform file,
you can download it into another Agilent signal generator that has the same option or software license
required to play it. Waveform files consist of three items:

• I/Q data
• Marker data
• File header

The signal generator automatically creates the marker file and the file header if the two items are not part of
the download. In this situation, the signal generator sets the file header information to unspecified (no
settings saved) and sets all markers to zero (off).

There are two ways to download waveform files, programmatically or using one of three available free
download utilities created by Agilent Technologies:

• Intuilink for PSG/ESG Signal Generators
www.agilent.com/find/intuilink

• PSG/ESG Download Assistant for use only with MATLAB®

www.agilent.com/find/downloadassistant

• N7622A Signal Studio Toolkit
www.agilent.com/find/signalstudio

Waveform Data Requirements
To be successful in downloading files, you must first create the data in the required format.

• Signed 2’s complement

• 2-byte integer values

 MATLAB is a U.S. registered trademark of The Math Works, Inc.
168 Chapter 4

Creating and Downloading Waveform Files
Overview
• Input data range of −32768 to 32767

• Minimum of 60 samples per waveform (60 I and 60 Q data points)

• Interleaved I and Q data

• Big endian byte order

• The same name for the marker and I/Q file

This is only a requirement if you create and download a marker file, otherwise the signal generator
automatically creates the marker file using the I/Q data file name. For more information, see “Waveform
Structure” on page 178.

For more information on waveform data, see “Understanding Waveform Data” on page 170.
Chapter 4 169

Creating and Downloading Waveform Files
Understanding Waveform Data
Understanding Waveform Data
The signal generator accepts binary data formatted into a binary I/Q file. This section explains the necessary
components of the binary data, which uses ones and zeros to represent a value.

Bits and Bytes
Binary data uses the base-two number system. The location of each bit within the data represents a value that

uses base two raised to a power (2n-1). The exponent is n − 1 because the first position is zero. The first bit
position, zero, is located at the far right. To find the decimal value of the binary data, sum the value of each
location:

1101 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20)
= (1 × 8) + (1 × 4) + (0 × 2) + (1 × 1)
= 13 (decimal value)

Notice that the exponent identifies the bit position within the data, and we read the data from right to left.

The signal generator accepts data in the form of bytes. Bytes are groups of eight bits:

01101110 = (0 ×27) + (1 × 26) + (1 × 25) + (0 × 24) +(1 ×23) + (1 × 22) + (1 × 21) + (0 × 20)
= 110 (decimal value)

The maximum value for a single unsigned byte is 255 (11111111 or 28−1), but you can use multiple bytes to
represent larger values. The following shows two bytes and the resulting integer value:

01101110 10110011= 28339 (decimal value)

The maximum value for two unsigned bytes is 65535. Since binary strings lengthen as the value increases, it
is common to show binary values using hexadecimal (hex) values (base 16), which are shorter. The value
65535 in hex is FFFF. Hexadecimal consists of the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. In
decimal, hex values range from 0 to 15 (F). It takes 4 bits to represent a single hex value.

For I and Q data, the signal generator uses two bytes to represent an integer value.

1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101

6 = 0110 7 = 0111 8 = 1000 9 = 1001 A = 1010

B = 1011 C = 1100 D = 1101 E = 1110 F = 1111
170 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data
LSB and MSB (Bit Order)
Within groups (strings) of bits, we designate the order of the bits by identifying which bit has the highest
value and which has the lowest value by its location in the bit string. The following is an example of this
order.

Little Endian and Big Endian (Byte Order)
When you use multiple bytes (as required for the waveform data), you must identify their order. This is
similar to identifying the order of bits by LSB and MSB. To identify byte order, use the terms little endian
and big endian. These terms are used by designers of computer processors.

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of the
bit string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of
the bit string.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1

LSBMSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

Bit Position

Because we are using 2-bytes of data, the MSB appears in the second byte.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data

Bit Position

1 0 1 1 0 1 1 1

15 14 13 12 11 10 9 8

Data

Bit Position

Big Endian Order

Little Endian Order

1 1 1 0 1 0 0 1

7 6 5 4 3 2 1 0

Hex values = E9 B7

Hex values = B7 E9

LSB MSB

MSB LSB

The lowest order byte that contains bits 0–7 comes first.

The highest order byte that contains bits 8–15 comes first.
Chapter 4 171

Creating and Downloading Waveform Files
Understanding Waveform Data
Notice in the previous figure that the LSB and MSB positioning changes with the byte order. In little endian
order, the LSB and MSB are next to each other in the bit sequence.

NOTE For I/Q data downloads, the signal generator requires big endian order. For each I/Q data
point, the signal generator uses four bytes (two integer values), two bytes for the I point and
two bytes for the Q point.

The byte order, little endian or big endian, depends on the type of processor used with your development

platform. Intel© processors and its clones use little endian. Sun™ and Motorola processors use big endian.
The Apple PowerPC processor, while big endian oriented, also supports the little endian order. Always refer
to the processor’s manufacturer to determine the order they use for bytes, and if they support both, how to
ensure that you are using the correct byte order.

Development platforms include any product that creates and saves waveform data to a file. This includes
Agilent Technologies Advanced Design System EDA software, C++, MATLAB, and so forth.

The byte order describes how the system processor stores integer values as binary data in memory. If you
output data from a little endian system to a text file (ASCII text), the values are the same as viewed from a
big endian system. The order only becomes important when you use the data in binary format, as is done
when downloading data to the signal generator.

Byte Swapping
While the processor for the development platform determines the byte order, the recipient of the data may
require the bytes in the reverse order. In this situation, you must reverse the byte order before downloading
the data. This is commonly referred to as byte swapping. You can swap bytes either programmatically or by
using the Agilent Technologies IntuiLink for PSG/ESG Signal Generators software. For the signal generator,
byte swapping is the method to change the byte order of little endian to big endian. For more information on
little endian and big endian order, see “Little Endian and Big Endian (Byte Order)” on page 171.

The following figure shows the concept of byte swapping for the signal generator. Remember that we can
represent data in hex format (4 bits per hex value), so each byte (8 bits) in the figure shows two example hex
values.

 Intel is a U.S. registered trademark of Intel Corporation.
Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.
172 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data
To correctly swap bytes, you must group the data to maintain the I and Q values. One common method is to
break the two-byte integer into one-byte character values (0–255). Character values use 8 bits (1 byte) to

identify a character. Remember that the maximum unsigned 8-bit value is 255 (28 − 1). Changing the data
into character codes groups the data into bytes. The next step is then to swap the bytes to align with big
endian order.

NOTE The signal generator always assumes that downloaded data is in big endian order, so there is
no data order check. Downloading data in little endian order will produce an undesired
output signal.

DAC Input Values
The signal generator uses a 16-bit DAC (digital-to-analog convertor) to process each of the 2-byte integer
values for the I and Q data points. The DAC determines the range of input values required from the I/Q data.
Remember that with 16-bits we have a range of 0–65535, but the signal generator divides this range between
positive and negative values:

• 32767 = positive full scale output
• 0 = 0 volts
• −32768 = negative full scale output

Because the DAC’s range uses both positive and negative values, the signal generator requires signed input
values. The following list illustrates the DAC’s input value range.

E9 B7 53 2A

0 1 2 3

E9B7 532A

0 1 2 3

I data = bytes 0 and 1
Q data = bytes 2 and 3

Little Endian

Big Endian

16-bit integer values (2 bytes = 1 integer value)

I Q
Chapter 4 173

Creating and Downloading Waveform Files
Understanding Waveform Data
Notice that it takes only 15 bits (215) to reach the Vmax (positive) or Vmin (negative) values. The MSB
determines the sign of the value. This is covered in “2’s Complement Data Format” on page 176.

Using E443xB ESG DAC Input Values

The signal generator’s input values differ from those of the earlier E443xB ESG models. For the E443xB
models, the input values are all positive (unsigned) and the data is contained within 14 bits plus 2 bits for
markers. This means that the E443xB DAC has a smaller range:

• 0 = negative full scale output
• 8192 = 0 volts
• 16383 = positive full scale output

Although the signal generator uses signed input values, it accepts unsigned data created for the E443xB and
converts it to the proper DAC values. To download an E443xB files to the signal generator, use the same
command syntax as for the E443xB models. For more information on downloading E443xB files, see
“Downloading E443xB Signal Generator Files” on page 211.

Scaling DAC Values

The signal generator uses an interpolation algorithm (sampling between the I/Q data points) when
reconstructing the waveform. For common waveforms, this interpolation can cause overshoot, which may
create a DAC over-range error condition. Because of the interpolation, the error condition can occur even
when all the I and Q values are within the DAC input range. To avoid the DAC over-range problem, you
must scale (reduce) the I and Q input values, so that any overshoot remains within the DAC range.

Voltage DAC Range Input Range Binary Data Hex Data

Vmax

Vmin

0 Volts

32767

-32768

0

01111111 11111111

00000000 00000000

00000000 00000001

11111111 11111111

10000000 00000000

1

-1

7FFF

0001

0000
FFFF

80000

32767

65535

32766

32768
174 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data
There is no single scaling value that is optimal for all waveforms. To achieve the maximum dynamic range,
select the largest scaling value that does not result in a DAC over-range error. There are two ways to scale
the I/Q data:

• Reduce the input values for the DAC.
• Use the SCPI command :RADio:ARB:RSCaling <val> or the front-panel keys, Mode > Dual ARB >

ARB Setup > More (1 of 2) > Waveform Runtime Scaling, to set the waveform amplitude as a percentage of
full scale.

NOTE The signal generator comes from the factory with scaling set to 70%. If you reduce the DAC
input values, ensure that you set the signal generator scaling (:RADio:ARB:RSCaling)
to an appropriate setting that accounts for the reduced values.

To further minimize overshoot problems, use the correct FIR filter for your signal type and adjust your
sample rate to accommodate the filter response.

DAC over-range No over-range

Interpolation

Interpolation

-32768

32767

Scaling effect
Max input value
Chapter 4 175

Creating and Downloading Waveform Files
Understanding Waveform Data
2’s Complement Data Format
The signal generator requires signed values for the input data. For binary data, two’s complement is a way to
represent positive and negative values. The most significant bit (MSB) determines the sign.

• 0 equals a positive value (01011011 = 91 decimal)
• 1 equals a negative value (10100101 = −91 decimal)

Like decimal values, if you sum the binary positive and negative values, you get zero. The one difference
with binary values is that you have a carry, which is ignored. The following shows how to calculate the two’s
complement using 16-bits. The process is the same for both positive and negative values.

I and Q Interleaving
When you create the waveform data, the I and Q data points typically reside in separate arrays or files. The
signal generator requires a single I/Q file for waveform data playback. The process of interleaving creates a
single array with alternating I and Q data points, with the Q data following the I data. This array is then
downloaded to the signal generator as a binary file. The interleaved file comprises the waveform data points
where each set of data points, one I data point and one Q data point, represents one I/Q waveform point.

NOTE The signal generator can accept separate I and Q files created for the earlier E443xB ESG
models. For more information on downloading E443xB files, see “Downloading E443xB
Signal Generator Files” on page 211.

Convert the decimal value to binary.

23710 = 01011100 10011110

Notice that 15 bits (0-14) determine the value and bit 16 (MSB) indicates a positive value.
Invert the bits (1 becomes 0 and 0 becomes 1).

10100011 01100001

Add one to the inverted bits. Adding one makes it a two’s complement of the original binary value.

10100011 01100001
+ 00000000 00000001
10100011 01100010

The MSB of the resultant is one, indicating a negative value (−23710).
Test the results by summing the binary positive and negative values; when correct, they produce zero.

 01011100 10011110
+ 10100011 01100001
00000000 00000000
176 Chapter 4

Creating and Downloading Waveform Files
Understanding Waveform Data
The following figure illustrates interleaving I and Q data. Remember that it takes two bytes (16 bits) to
represent one I or Q data point.

11001010 01110110 01110111 00111110I Data

Q Data 11101001 11001010 01011110 01110010

11001010 01110110 11101001 11001010 01110111 00111110 01011110 01110010

I Data Q DataI Data Q Data

Interleaved Binary Data

CA 76 E9 CA 77 3E 5E 72

Q Data Q DataI DataI Data

Interleaved Hex Data

Binary

Hex CA 76 77 3E

Binary

Hex E9 CA 5E 72

Waveform
data point

Waveform
data point

Waveform data point Waveform data point

MSB MSBLSB LSB
Chapter 4 177

Creating and Downloading Waveform Files
Waveform Structure
Waveform Structure
To play back waveforms, the signal generator uses data from the following three files:

• File header
• Marker file
• I/Q file

All three files have the same name, the name of the I/Q data file, but the signal generator stores each file in
its respective directory (headers, markers, and waveform). When you extract the waveform file (I/Q data
file), it includes the other two files, so there is no need to extract each one individually. For more
information on file extractions, see “Commands for Downloading and Extracting Waveform Data” on
page 186.

File Header
The file header contains settings for the ARB modulation format such as sample rate, marker polarity, I/Q
modulation attenuator setting and so forth. When you create and download I/Q data, the signal generator
automatically creates a file header with all saved parameters set to unspecified. With unspecified header
settings, the waveform either uses the signal generator default settings, or if a waveform was previously
played, the settings from that waveform. Ensure that you configure and save the file header settings for each
waveform. Refer to the User’s Guide for more information on file headers

NOTE If you have no RF output when you play back a waveform, ensure that the marker RF
blanking function has not been set for any of the markers. The marker RF blanking function
is a header parameter that can be inadvertently set active for a marker by a previous
waveform.

Marker File
The marker file uses one byte per I/Q waveform point to set the state of the four markers either on (1) or off
(0) for each I/Q point. When a marker is active (on), it provides an output trigger signal to the rear panel
EVENT connector that corresponds to the active marker number. Because markers are set at each waveform
point, the marker file contains the same number of bytes as there are waveform points. For example, for 200
waveform points, the marker file contains 200 bytes.

Although a marker point is one byte, the signal generator uses only bits 0–3 to configure the markers; bits
4–7 are reserved and set to zero. The following example shows a marker byte.
178 Chapter 4

Creating and Downloading Waveform Files
Waveform Structure
The following example shows a marker binary file (all values in hex) for a waveform with 200 points.
Notice the first marker point, 0f, shows all four markers on for only the first waveform point.

If you create your own marker file, its name must be the same as the waveform file. If you download I/Q
data without a marker file, the signal generator automatically creates a marker file with all points set to zero.
For more information on markers, see the User’s Guide.

NOTE Downloading marker data using a file name that currently resides on the signal generator
overwrites the existing marker file without affecting the I/Q (waveform) file. However
downloading just the I/Q data with the same file name as an existing I/Q file also overwrites
the existing marker file setting all bits to zero.

Marker Byte 0000 1 0 1 1

Binary

Hex

Marker Number Position4 3 2 1

Reserved

0000 0101

05

Sets markers 1 and 3 on for a waveform point

Example of Setting a Marker Byte

01 = Marker 1 on

05 = Markers 1 and 3 on

04 = Marker 3 on

00 = No active markers

0f = All markers on
Chapter 4 179

Creating and Downloading Waveform Files
Waveform Structure
I/Q File
The I/Q file contains the interleaved I and Q data points (signed 16-bit integers for each I and Q data point).
Each I/Q point equals one waveform point. The signal generator stores the I/Q data in the waveform
directory.

NOTE If you download I/Q data using a file name that currently resides on the signal generator, it
also overwrites the existing marker file setting all bits to zero and the file header setting all
parameters to unspecified.

Waveform
A waveform consists of samples. When you select a waveform for playback, the signal generator loads
settings from the file header and creates the waveform samples from the data in the marker and I/Q
(waveform) files. The file header, while required, does not affect the number of bytes that compose a
waveform sample. One sample contains five bytes:

To create a waveform, the signal generator requires a minimum of 60 samples. To help minimize signal
imperfections, use an even number of samples (for information on waveform continuity, see “Waveform
Phase Continuity” on page 181). When you store waveforms, the signal generator saves changes to the
waveform file, marker file, and file header.

I/Q Data Marker Data 1 Waveform Sample+ =
2 bytes I
(16 bits)

2 bytes Q
(16 bits)

1byte (8 bits)
Bits 4–7 reserved—Bits 0–3 set

5 bytes
180 Chapter 4

Creating and Downloading Waveform Files
Waveform Phase Continuity
Waveform Phase Continuity

Phase Discontinuity, Distortion, and Spectral Regrowth
The most common arbitrary waveform generation use case is to play back a waveform that is finite in length
and repeat it continuously. Although often overlooked, a phase discontinuity between the end of a waveform
and the beginning of the next repetition can lead to periodic spectral regrowth and distortion.

For example, the sampled sinewave segment in the following figure may have been simulated in software or
captured off the air and sampled. It is an accurate sinewave for the time period it occupies, however the
waveform does not occupy an entire period of the sinewave or some multiple thereof. Therefore, when
repeatedly playing back the waveform by an arbitrary waveform generator, a phase discontinuity is
introduced at the transition point between the beginning and the end of the waveform.

Repetitions with abrupt phase changes result in high frequency spectral regrowth. In the case of playing
back the sinewave samples, the phase discontinuity produces a noticeable increase in distortion components
in addition to the line spectra normally representative of a single sinewave.

Sampled Sinewave with Phase Discontinuity

Waveform length

discontinuity
Phase
Chapter 4 181

Creating and Downloading Waveform Files
Waveform Phase Continuity
Avoiding Phase Discontinuities
You can easily avoid phase discontinuities for periodic waveforms by simulating an integer number of
cycles when you create your waveform segment.

NOTE If there are N samples in a complete cycle, only the first N-1 samples are stored in the
waveform segment. Therefore, when continuously playing back the segment, the first and
Nth waveform samples are always the same, preserving the periodicity of the waveform.

By adding off time at the beginning of the waveform and subtracting an equivalent amount of off time from
the end of the waveform, you can address phase discontinuity for TDMA or pulsed periodic waveforms.
Consequently, when the waveform repeats, the lack of signal present avoids the issue of phase discontinuity.

However, if the period of the waveform exceeds the waveform playback memory available in the arbitrary
waveform generator, a periodic phase discontinuity could be unavoidable. N5110B Baseband Studio for
Waveform Capture and Playback alleviates this concern because it does not rely on the signal generator
waveform memory. It streams data either from the PC hard drive or the installed PCI card for N5110B
enabling very large data streams. This eliminates any restrictions associated with waveform memory to
correct for repetitive phase discontinuities. Only the memory capacity of the hard drive or the PCI card
limits the waveform size.

Sampled Sinewave with No Discontinuity

Waveform length

Added sample
182 Chapter 4

Creating and Downloading Waveform Files
Waveform Phase Continuity
The following figures illustrate the influence a single sample can have. The generated 3-tone test signal
requires 100 samples in the waveform to maintain periodicity for all three tones. The measurement on the
left shows the effect of using the first 99 samples rather than all 100 samples. Notice all the distortion
products (at levels up to −35 dBc) introduced in addition to the wanted 3-tone signal. The measurement on
the right shows the same waveform using all 100 samples to maintain periodicity and avoid a phase
discontinuity. Maintaining periodicity removes the distortion products.

3-tone - 20 MHz Bandwidth3-tone - 20 MHz Bandwidth
Measured distortion = 35 dBc

Phase Continuity

Measured distortion = 86 dBc

Phase Discontinuity
Chapter 4 183

Creating and Downloading Waveform Files
Waveform Memory
Waveform Memory
The signal generator provides two types of memory, volatile and non-volatile. You can download files to
either memory type.

Volatile Random access memory that does not survive cycling of the signal generator power.
This memory is commonly referred to as waveform memory (WFM1) or waveform
playback memory. To play back waveforms, they must reside in volatile memory. The
following file types share this memory:

Non-volatile Storage memory where files survive cycling the signal generator power. Files remain
until overwritten or deleted. To play back waveforms after cycling the signal generator
power, you must load waveforms from non-volatile waveform memory (NVWFM) to
volatile waveform memory (WFM1). The following file types share this memory:

The following figure shows the locations within the signal generator for volatile and non-volatile waveform
data.

• I/Q • marker • file header • user PRAM

• waveform sequences (multiple I/Q files played together)

• I/Q • marker • file header • instrument state

• user data • user PRAM • sweep list • waveform sequences (multiple I/Q
files played together)

ARBI ARBQ NVARBQNVARBI

USER

HEADER MARKERS WAVEFORM

SEQ

SECUREWAVE

BBG1

E443xB Volatile E443xB Non-volatile
Non-volatile waveform datawaveform data waveform data

Waveform sequences Volatile waveform directory

HEADER MARKERS WAVEFORM SECUREWAVE

Root directory

Volatile waveform data
184 Chapter 4

Creating and Downloading Waveform Files
Waveform Memory
Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a waveform file with
60 samples (the minimum number of samples) has 300 bytes (5 bytes per sample × 60 samples), but the
signal generator allocates 1024 bytes of memory. If a waveform is too large to fit into 1024 bytes, the signal
generator allocates additional memory in multiples of 1024 bytes. For example, the signal generator
allocates 3072 bytes of memory for a waveform with 500 samples (2500 bytes).

3 x 1024 bytes = 3072 bytes of memory

As shown in the examples, waveforms can cause the signal generator to allocate more memory than what is
actually used, which decreases the amount of available memory.

Non-Volatile Memory

The signal generator allocates non-volatile memory in blocks of 512 bytes. For files less than or equal to
512 bytes, the file uses only one block of memory. For files larger than 512 bytes, the signal generator
allocates additional memory in multiples of 512 byte blocks. For example, a file that has 21,538 bytes
consumes 43 memory blocks (22,016 bytes).

Memory Size
The amount of available memory, volatile and non-volatile, varies by option and the size of the other files
that share the memory. When we refer to waveform files, we state the memory size in samples (one sample
equals five bytes). The baseband generator (BBG) options (001/601 and 002/602) contain the waveform
playback memory. The following tables show the maximum available memory.

Volatile (WFM1) Memory Non-Volatile (NVWFM) Memory

Option Size Option Size

001/601 (BBG) 8 MSa (40 MB) Standard 3 MSa (15 MB)

002 (BBG) 32 MSa (160 MB) 005 (Hard disk) 1 GSa (5 GB)

602 (BBG) 64 MSa (320 MB)
Chapter 4 185

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Commands for Downloading and Extracting Waveform Data
You can download I/Q data and the associated file header and marker file information (collectively called
waveform data) into volatile or non-volatile memory. For information on waveform structure, see
“Waveform Structure” on page 178.

NOTE Before downloading files into volatile memory (WFM1), turn off the ARB.
Press: Mode > Dual Arb > ARB Off On until Off highlights
Or send: [:SOURce]:RADio:ARB[:STATe] OFF

The signal generator provides the option of downloading waveform data either for extraction or not for
extraction. When you extract waveform data, the signal generator encrypts the data. The SCPI download
commands determine whether the waveform data is extractable.

If you use SCPI commands to download waveform data to be extracted later, you must use the
MEM:DATA:UNPRotected command. If you use FTP commands, no special command syntax is necessary.

You can download or extract waveform data created in any of the following ways:

• with signal simulation software, such as MATLAB or Agilent Advanced Design System (ADS)
• with advanced programming languages, such as C++, VB or VEE
• with Agilent Signal Studio software
• with the signal generator

NOTE You can not extract files created with ESG firmware revisions prior to C.03.10.

Waveform Data Encryption
You can download encrypted waveform data extracted from one signal generator into another signal
generator with the same option or software license for the modulation format. You can also extract encrypted
waveform data created with software such as MATLAB or ADS, providing the data was downloaded to the
signal generator using the proper command.

When you generate a waveform from the signal generator’s internal ARB modulation format or download a
waveform from an Agilent Signal Studio software product, the resulting waveform data is automatically
stored in volatile memory and is available for extraction as an encrypted file.

The exception to encrypted file extraction is user-created I/Q data. You can extract this I/Q data
unencrypted.
186 Chapter 4

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Encrypted I/Q Files and the Securewave Directory

The signal generator uses the securewave directory to perform file encryption (extraction) and decryption
(downloads). The securewave directory is not an actual storage directory, but rather a portal for the
encryption and decryption process. While the securewave directory contains file names, these are actually
pointers to the true files located in signal generator memory (volatile or non-volatile). When you download
an encrypted file, the securewave directory decrypts the file and unpackages the contents into its file
header, I/Q data, and marker data. When you extract a file, the securewave directory packages the file
header, I/Q data, and marker data and encrypts the waveform data file.

The signal generator uses the following securewave directory paths for file extractions and encrypted file
downloads:

Volatile /user/securewave/file_name or swfm:file_name

Non-volatile /user/bbg1/securewave/file_name or snvwfm1:file_name

NOTE To extract files (other than user-created I/Q files) and to download encrypted files, you must
use the securewave directory. If you attempt to extract previously downloaded encrypted
files (including Signal Studio downloaded files or internally created signal generator files)
without using the securewave directory, the signal generator generates an error and displays
ERROR: 221, Access Denied.

File Transfer Methods

• SCPI using VXI-11 (VMEbus Extensions for Instrumentation as defined in VXI-11)
• SCPI over the GPIB or RS 232
• SCPI with sockets LAN (using port 5025)
• File Transfer Protocol (FTP)

SCPI Command Line Structure
The signal generator expects to see waveform data as block data (binary files). The IEEE standard
488.2-1992 section 7.7.6 defines block data. The following example shows how to structure a SCPI
command for downloading waveform data (#ABC represents the block data):

:MMEM:DATA "<file_name>",#ABC

"<file_name>" the I/Q file name and file path within the signal generator

indicates the start of the data block

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes to follow in C

C the actual binary waveform data
Chapter 4 187

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
The following example demonstrates this structure:

WFM1: the file path

my_file the I/Q file name as it will appear in the signal generator’s memory catalog

indicates the start of the data block

3 B has three decimal digits

240 240 bytes of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the binary data downloaded to the
signal generator, however not all ASCII values are printable

NOTE If you use SCPI with sockets to send data to the signal generator, you must provide an
end-of-file indicator, as shown in the following command:
MMEM:DATA "WFM1:<file_name>",<blockdata>NL^END

Commands and File Paths for Downloading and Extracting Waveform Data
You can download or extract waveform data using the commands and file paths in the following tables:

• Table 4-1, “Downloading Unencrypted Files for No Extraction,” on page 188
• Table 4-2, “Downloading Encrypted Files for No Extraction,” on page 189
• Table 4-3, “Downloading Unencrypted Files for Extraction,” on page 189
• Table 4-4, “Downloading Encrypted Files for Extraction,” on page 190
• Table 4-5, “Extracting Encrypted Waveform Data,” on page 191

Table 4-1 Downloading Unencrypted Files for No Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory MMEM:DATA "WFM1:<file_name>",<blockdata>
MMEM:DATA "MKR1:<file_name>",<blockdata>
MMEM:DATA "HDR1:<file_name>",<blockdata>

SCPI/volatile memory
with full directory path

MMEM:DATA "user/bbg1/waveform/<file_name>",<blockdata>
MMEM:DATA "user/bbg1/markers/<file_name>",<blockdata>
MMEM:DATA "user/bbg1/header/<file_name>",<blockdata>

file_name A C

MMEM:DATA “WFM1:my_file”,#3 240 12%S!4&07#8g*Y9@7...

B

188 Chapter 4

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
SCPI/non-volatile
memory

MMEM:DATA "NVWFM:<file_name>",<blockdata>
MMEM:DATA "NVMKR:<file_name>",<blockdata>
MMEM:DATA "NVHDR:<file_name>",<blockdata>

SCPI/non-volatile
memory with full
directory path

MMEM:DATA /user/waveform/<file_name>",<blockdata>
MMEM:DATA /user/markers/<file_name>",<blockdata>
MMEM:DATA /user/header/<file_name>",<blockdata>

Table 4-2 Downloading Encrypted Files for No Extraction

Download Method
/Memory Type

Command Syntax Options

SCPI/volatile memory MMEM:DATA "user/bbg1/securewave/<file_name>",<blockdata>
MMEM:DATA "SWFM1:<file_name>",<blockdata>
MMEM:DATA "file_name@SWFM1",<blockdata>

SCPI/non-volatile
memory

MMEM:DATA "user/securewave/<file_name>",<blockdata>
MMEM:DATA "SNVWFM:<file_name>",<blockdata>
MMEM:DATA "file_name@SNVWFM",<blockdata>

Table 4-3 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile
memory

MEM:DATA:UNPRotected "/user/bbg1/waveform/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/bbg1/markers/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/bbg1/header/file_name",<blockdata>
MEM:DATA:UNPRotected "WFM1:file_name",<blockdata>
MEM:DATA:UNPRotected "MKR1:file_name",<blockdata>
MEM:DATA:UNPRotected "HDR1:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@WFM1",<blockdata>
MEM:DATA:UNPRotected "file_name@MKR1",<blockdata>
MEM:DATA:UNPRotected "file_name@HDR1",<blockdata>

Table 4-1 Downloading Unencrypted Files for No Extraction

Download Method/
Memory Type

Command Syntax Options
Chapter 4 189

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
SCPI/non-volatile
memory

MEM:DATA:UNPRotected "/user/waveform/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/markers/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/header/file_name",<blockdata>
MEM:DATA:UNPRotected "NVWFM:file_name",<blockdata>
MEM:DATA:UNPRotected "NVMKR:file_name",<blockdata>
MEM:DATA:UNPRotected "NVHDR:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@NVWFM",<blockdata>
MEM:DATA:UNPRotected "file_name@NVMKR",<blockdata>
MEM:DATA:UNPRotected "file_name@NVHDR",<blockdata>

FTP/volatile

memory1
put <file_name> /user/bbg1/waveform/<file_name>
put <file_name> /user/bbg1/markers/<file_name>

FTP/non-volatile

memory1
put <file_name> /user/waveform/<file_name>
put <file_name> /user/markers/<file_name>

1 See “FTP Procedures” on page 191.

Table 4-4 Downloading Encrypted Files for Extraction

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile
memory

MEM:DATA:UNPRotected "/user/bbg1/securewave/file_name",<blockdata>
MEM:DATA:UNPRotected "SWFM1:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@SWFM1",<blockdata>

SCPI/non-volatile
memory

MEM:DATA:UNPRotected "/user/securewave/file_name",<blockdata>
MEM:DATA:UNPRotected "SNVWFM:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@SNVWFM",<blockdata>

FTP/volatile

memory1

1 See “FTP Procedures” on page 191.

put <file_name> /user/bbg1/securewave/<file_name>

FTP/non-volatile

memory1
put <file_name> /user/securewave/<file_name>

Table 4-3 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options
190 Chapter 4

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
FTP Procedures
There are three ways to FTP files:

• use Microsoft’s ® Internet Explorer FTP feature

• use the signal generator’s internal web server (ESG firmware ≥ C.03.76)
• use the PC’s or UNIX command window

Using Microsoft’s Internet Explorer

1. Enter the signal generator’s hostname or IP address as part of the FTP URL.

ftp://<host name> or <IP address>

2. Press Enter on the keyboard or Go from the Internet Explorer window.

The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Table 4-5 Extracting Encrypted Waveform Data

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile
memory

MMEM:DATA? "/user/bbg1/securewave/file_name"
MMEM:DATA? "SWFM1:file_name"
MMEM:DATA? "file_name@SWFM1"

SCPI/non-volatile
memory

MMEM:DATA? "/user/securewave/file_name"
MMEM:DATA? "SNVWFM:file_name"
MMEM:DATA? "file_name@SNVWFM"

FTP/volatile

memory1

1 See FTP Procedures.

get /user/bbg1/securewave/<file_name>

FTP/non-volatile

memory1
get /user/securewave/<file_name>

 Microsoft is a U.S registered trademark of Microsoft Corporation.
Chapter 4 191

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Using the Signal Generator’s Internal Web Server

1. Enter the signal generator’s hostname or IP address in the URL.

http://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of the window.

The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, see “Communicating with the Signal Generator Using a
Web Browser” on page 32.

Using the Command Window (PC or UNIX)

This procedure downloads to non-volatile memory. To download to volatile memory, change the file path.

1. From the PC command prompt or UNIX command line, change to the destination directory for the file
you intend to download.

2. From the PC command prompt or UNIX command line, type ftp <instrument name>. Where
instrument name is the signal generator’s hostname or IP address.

3. At the User: prompt in the ftp window, press Enter (no entry is required).

4. At the Password: prompt in the ftp window, press Enter (no entry is required).

5. At the ftp prompt, type:
put <file_name> /user/waveform/<file_name1>

where <file_name> is the name of the file to download and <file_name1> is the name designator
for the signal generator’s /user/waveform/ directory.

• If a marker file is associated with the data file, use the following command to download it to the
signal generator:
put <marker file_name> /user/markers/<file_name1>

where <marker file_name> is the name of the file to download and <file_name1> is the
name designator for the file in the signal generator’s /user/markers/ directory. Marker files and
the associated I/Q waveform data have the same name.

NOTE If no marker file is provided, the signal generator automatically creates a default marker file
consisting of all zeros.

6. At the ftp prompt, type: bye

7. At the command prompt, type: exit
192 Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data
Creating Waveform Data
This section examines the C++ code algorithm for creating I/Q waveform data by breaking the programming
example into functional parts and explaining the code in generic terms. This is done to help you understand
the code algorithm in creating the I and Q data, so you can leverage the concept into your programming
environment. If you do not need this level of detail, you can find the complete programming example in
“Programming Examples” on page 214.

You can use various programming environments to create ARB waveform data. Generally there are two
types:

• Simulation software— this includes MATLAB, Agilent Technologies EESof Advanced Design System
(ADS), Signal Processing WorkSystem (SPW), and so forth.

• Advanced programming languages—this includes, C++, VB, VEE, MS Visual Studio.Net, Labview,
and so forth.

No matter which programming environment you use to create the waveform data, make sure that the data
conforms to the data requirements shown on page 168. To learn about I/Q data for the signal generator, see
“Understanding Waveform Data” on page 170.

Code Algorithm
This section uses code from the C++ programming example “Importing, Byte Swapping, Interleaving, and
Downloading I and Q Data—Big and Little Endian Order” on page 235 to demonstrate how to create and
scale waveform data.

There are three steps in the process of creating an I/Q waveform:

1. Create the I and Q data.
2. Save the I and Q data to a text file for review.
3. Interleave the I and Q data to make an I/Q file, and swap the byte order for little-endian platforms.

For information on downloading I/Q waveform data to a signal generator, refer to “Commands and File
Paths for Downloading and Extracting Waveform Data” on page 188 and “Downloading Waveform Data”
on page 200.
Chapter 4 193

Creating and Downloading Waveform Files
Creating Waveform Data
1. Create I and Q data.
The following lines of code create scaled I and Q data for a sine wave. The I data consists of one period of a
sine wave and the Q data consists of one period of a cosine wave.

Line Code—Create I and Q data

1
2
3
4
5
6
7
8
9

10
11

const int NUMSAMPLES=500;
main(int argc, char* argv[]);
{
short idata[NUMSAMPLES];
short qdata[NUMSAMPLES];
int numsamples = NUMSAMPLES;
for(int index=0; index<numsamples; index++);
{
idata[index]=23000 * sin((2*3.14*index)/numsamples);
qdata[index]=23000 * cos((2*3.14*index)/numsamples);
}

Line Code Description—Create I and Q data

1 Define the number of waveform points. Note that the maximum number of waveform
points that you can set is based on the amount of available memory in the signal generator.
For more information on signal generator memory, refer to “Waveform Memory” on
page 184.

2 Define the main function in C++.

4 Create an array to hold the generated I values. The array length equals the number of the
waveform points. Note that we define the array as type short, which represents a 16-bit
signed integer in most C++ compilers.

5 Create an array to hold the generated Q values (signed 16-bit integers).

6 Define and set a temporary variable, which is used to calculate the I and Q values.
194 Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data
7–11 Create a loop to do the following:

• Generate and scale the I data (DAC values). This example uses a simple sine equation,
where 2*3.14 equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0–499, creating 500 I data points over one
period of the sine waveform.

— Set the scale of the DAC values in the range of −32767 to 32768, where the values
−32767 and 32768 equal full scale negative and positive respectively. This example
uses 23000 as the multiplier, resulting in approximately 70% scaling. For more
information on scaling, see “Scaling DAC Values” on page 174.

NOTE The signal generator comes from the factory with I/Q scaling set to 70%. If
you reduce the DAC input values, ensure that you set the signal generator
scaling (:RADio:ARB:RSCaling) to an appropriate setting that
accounts for the reduced values.

• Generate and scale the Q data (DAC value). This example uses a simple cosine
equation, where 2*3.14 equals one waveform cycle. Change the equation to fit your
application.

— The array pointer, index, increments from 0–499, creating 500 Q data points over
one period of the cosine waveform.

— Set the scale of the DAC values in the range of −32767 to 32768, where the values
−32767 and 32768 equal full scale negative and positive respectively. This example
uses 23000 as the multiplier, resulting in approximately 70% scaling. For more
information on scaling, see “Scaling DAC Values” on page 174.

Line Code Description—Create I and Q data
Chapter 4 195

Creating and Downloading Waveform Files
Creating Waveform Data
2. Save the I/Q data to a text file to review.

The following lines of code export the I and Q data to a text file for validation. After exporting the data, open
the file using Microsoft Excel or a similar spreadsheet program, and verify that the I and Q data are correct.

Line Code Description—Saving the I/Q Data to a Text File

12
13
14
15
16
17
18
19

char *ofile = "c:\\temp\\iq.txt";
FILE *outfile = fopen(ofile, "w");
if (outfile==NULL) perror ("Error opening file to write");
for(index=0; index<numsamples; index++)
{
fprintf(outfile, "%d, %d\n", idata[index], qdata[index]);
}
fclose(outfile);

Line Code Description—Saving the I/Q Data to a Text File

12 Set the absolute path of a text file to a character variable. In this example, iq.txt is the file
name and *ofile is the variable name.

For the file path, some operating systems may not use the drive prefix (‘c:’ in this example),
or may require only a single forward slash (/), or both ("/temp/iq.txt")

13 Open the text file in write format.

14 If the text file does not open, print an error message.

15–18 Create a loop that prints the array of generated I and Q data samples to the text file.

19 Close the text file.
196 Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data
3. Interleave the I and Q data, and byte swap if using little endian order.

This step has two sets of code:

• Interleaving and byte swapping I and Q data for little endian order
• Interleaving I and Q data for big endian order

For more information on byte order, see “Little Endian and Big Endian (Byte Order)” on page 171.

Line Code—Interleaving and Byte Swapping for Little Endian Order

20
21
22
23
24
25
26
27
28
29
30

char iqbuffer[NUMSAMPLES*4];
for(index=0; index<numsamples; index++)
{
short ivalue = idata[index];
short qvalue = qdata[index];
iqbuffer[index*4] = (ivalue >> 8) & 0xFF;
iqbuffer[index*4+1] = ivalue & 0xFF;
iqbuffer[index*4+2] = (qvalue >> 8) & 0xFF;
iqbuffer[index*4+3] = qvalue & 0xFF;
}
return 0;

Line Code Description—Interleaving and Byte Swapping for Little Endian Order

20 Define a character array to store the interleaved I and Q data. The character array makes
byte swapping easier, since each array location accepts only 8 bits (1 byte). The array size
increases by four times to accommodate two bytes of I data and two bytes of Q data.

21–29 Create a loop to do the following:

• Save the current I data array value to a variable.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this
condition exists, replace short with the appropriate object or label that
defines a 16-bit integer.

• Save the current Q data array value to a variable.
• Swap the low bytes (bits 0–7) of the data with the high bytes of the data (done for both
Chapter 4 197

Creating and Downloading Waveform Files
Creating Waveform Data
21–29 the I and Q data), and interleave the I and Q data.

— shift the data pointer right 8 bits to the beginning of the high byte (ivalue >> 8)

— AND (boolean) the high I byte with 0xFF to make the high I byte the value to store
in the IQ array—(ivalue >> 8) & 0xFF

— AND (boolean) the low I byte with 0xFF (ivalue & 0xFF) to make the low I byte the
value to store in the I/Q array location just after the high byte [index * 4 + 1]

— Swap the Q byte order within the same loop. Notice that the I and Q data interleave
with each loop cycle. This is due to the I/Q array shifting by one location for each I
and Q operation [index * 4 + n].

Line Code Description—Interleaving and Byte Swapping for Little Endian Order

1 0 1 1 0 1 1 1

15 14 13 12 11 10 9 8

Data

Bit Position

Little Endian Order

1 1 1 0 1 0 0 1

7 6 5 4 3 2 1 0

Hex values = E9 B7
Data pointer Data pointer shifted 8 bits

1 0 1 1 0 1 1 1

15 14 13 12 11 10 9 8

Hex value =B7

1 1 1 1 1 1 1 1 Hex value =FF

1 0 1 1 0 1 1 1 Hex value =B7

1 0 1 1 0 1 1 1

15 14 13 12 11 10 9 8

Data
Bit Position

I Data in I/Q Array after Byte Swap (Big Endian Order)

1 1 1 0 1 0 0 1

7 6 5 4 3 2 1 0

Hex value = B7 E9

1 0 1 1 0 1 1 1

15...................... 8

Data

Bit Position

Interleaved I/Q Array in Big Endian Order

1 1 1 0 1 0 0 1

7.................... 0

1 1 1 0 0 1 0 1

15...................... 8

0 1 1 0 1 0 1 1

7.................... 0

I Data Q Data
198 Chapter 4

Creating and Downloading Waveform Files
Creating Waveform Data
To download the data created in the above example, see “Using Advanced Programming Languages” on
page 203.

Line Code—Interleaving I and Q data for Big Endian Order

20
21
22
23
24
25
26

short iqbuffer[NUMSAMPLES*2];
for(index=0; index<numsamples; index++)
{
iqbuffer[index*2] = idata[index];
iqbuffer[index*2+1] = qdata[index];
}
return 0;

Line Code Description—Interleaving I and Q data for Big Endian Order

20 Define a 16-bit integer (short) array to store the interleaved I and Q data. The array size
increases by two times to accommodate two bytes of I data and two bytes of Q data.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this
condition exists, replace short with the appropriate object or label that
defines a 16-bit integer.

21–25 Create a loop to do the following:

• Store the I data values to the I/Q array location [index*2].
• Store the Q data values to the I/Q array location [index*2+1].

1 0 1 1 0 1 1 1

15...................... 8

Data

Bit Position

Interleaved I/Q Array in Big Endian Order

1 1 1 0 1 0 0 1

7.................... 0

1 1 1 0 0 1 0 1

15...................... 8

0 1 1 0 1 0 1 1

7.................... 0

I Data Q Data
Chapter 4 199

Creating and Downloading Waveform Files
Downloading Waveform Data
Downloading Waveform Data
This section examines methods of downloading I/Q waveform data created in MATLAB (a simulation
software) and C++ (an advanced programming language). For more information on simulation and
advanced programming environments, see “Creating Waveform Data” on page 193.

To download data from simulation software environments, it is typically easier to use one of the free
download utilities (described on page 210), because simulation software usually saves the data to a file. In
MATLAB however, you can either save data to a .mat file or create a complex array. To facilitate
downloading a MATLAB complex data array, Agilent created the PSG/ESG Download Assistant (one of the
free download utilities), which downloads the complex data array from within the MATLAB environment.
This section shows how to use the download assistant.

For advanced programming languages, this section closely examines the code algorithm for downloading
I/Q waveform data by breaking the programming examples into functional parts and explaining the code in
generic terms. This is done to help you understand the code algorithm in downloading the interleaved I/Q
data, so you can leverage the concept into your programming environment. While not discussed in this
section, you may also save the data to a binary file and use one of the download utilities to download the
waveform data (see “Using the Download Utilities” on page 210).

 If you do not need the level of detail this section provides, you can find complete programming examples in
“Programming Examples” on page 214. Prior to downloading the I/Q data, ensure that it conforms to the
data requirements shown on page 168. To learn about I/Q data for the signal generator, see “Understanding
Waveform Data” on page 170. For creating waveform data, see “Creating Waveform Data” on page 193.

NOTE Before downloading files into volatile memory (WFM1), turn off the ARB.
Press: Mode > Dual Arb > ARB Off On until Off highlights
Or send: [:SOURce]:RADio:ARB[:STATe] OFF

Using Simulation Software
This procedure uses a complex data array created in MATLAB and uses the PSG/ESG Download Assistant
to download the data. To obtain the PSG/ESG Download Assistant, see “Using the Download Utilities” on
page 210.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.
200 Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data
1. Open a connection session with the signal generator.
The following code establishes a LAN connection with the signal generator, sends the IEEE SCPI command
*idn?, and if the connection fails, displays an error message.

Line Code—Open a Connection Session

1

2
3
4
5

io = agt_newconnection('tcpip','IP address');
%io = agt_newconnection('gpib',<primary address>,<secondary
address>);
[status,status_description,query_result] = agt_query(io,'*idn?');
if status == -1
display ‘fail to connect to the signal generator’;
end;

Line Code Description—Open a Connection Session with the Signal Generator

1 Sets up a structure (indicated above by io) used by subsequent function calls to establish a
LAN connection to the signal generator.

• agt_newconnection() is the function of Agilent Download Assistant used in MATLAB
to build a connection to the signal generator.

• If you are using GPIB to connect to the signal generator, provide the board, primary
address, and secondary address: io = agt_newconnection('gpib',0,19);
Change the GPIB address based on your instrument setting.

2 Send a query to the signal generator to verify the connection.

• agt_query() is an Agilent Download Assistant function that sends a query to the signal
generator.

• If signal generator receives the query *idn?, status returns a zero and query_result
returns the signal generator’s model number, serial number, and firmware version.

3–5 If the query fails, display a message.
Chapter 4 201

Creating and Downloading Waveform Files
Downloading Waveform Data
2. Download the I/Q data
The following code downloads the generated waveform data to the signal generator, and if the download
fails, displays a message.

Line Code—Download the I/Q data

6

7
8
9

[status, status_description] = agt_waveformload(io, IQwave,
'waveformfile1', 2000, 'no_play','norm_scale');
if status == -1
display ‘fail to download to the signal generator’;
end;

Line Code Description—Download the I/Q data

6 Download the I/Q waveform data to the signal generator by using the function call
(agt_waveformload) from the Agilent Download Assistant. Some of the arguments are
optional as indicated below, but if one is used, you must use all arguments previous to the
one you require.

Notice that with this function, you can perform the following actions:

• download complex I/Q data
• name the file (optional argument)
• set the sample rate (optional argument)

If you do not set a value, the signal generator uses its preset value of 100 MHz, or if a
waveform was previously play, the value from that waveform.

• start or not start waveform playback after downloading the data (optional argument)

Use either the argument play or the argument no_play.

• whether to normalize and scale the I/Q data (optional argument)

If you normalize and scale the data within the body of the code, then use no_normscale,
but if you need to normalize and scale the data, use norm_scale. This normalizes the
waveform data to the DAC values and then scales the data to 70% of the DAC values.

• download marker data (optional argument)

If there is no marker data, the signal generator creates a default marker file, all marker
set to zero.

To verify the waveform data download, see “Loading, Playing, and Verifying a
Downloaded Waveform” on page 207.

7–9 If the download fails, display an error message.
202 Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data
Using Advanced Programming Languages
This procedure uses code from the C++ programming example “Importing, Byte Swapping, Interleaving,
and Downloading I and Q Data—Big and Little Endian Order” on page 235.

For information on creating I/Q waveform data, refer to “Creating Waveform Data” on page 193.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

1. Open a connection session with the signal generator.
The following code establishes a LAN connection with the signal generator or prints an error message if the
session is not opened successfully.

Line Code Description—Open a Connection Session

1

2
3
4
5
6
7

char* instOpenString ="lan[hostname or IP address]";
//char* instOpenString ="gpib<primary addr>,<secondary addr>";
INST id=iopen(instOpenString);
if (!id)
{
fprintf(stderr, "iopen failed (%s)\n", instOpenString);
return -1;
}

Line Code Description—Open a Connection Session

1 Assign the signal generator’s LAN hostname, IP address, or GPIB address to a character
string.

• This example uses the Agilent IO library’s iopen() SICL function to establish a LAN
connection with the signal generator. The input argument, lan[hostname or IP address]
contains the device, interface, or commander address. Change it to your signal generator
host name or just set it to the IP address used by your signal generator. For example:
“lan[999.137.240.9]”

• If you are using GPIB to connect to the signal generator, use the commented line in
place of the first line. Insert the GPIB address based on your instrument setting, for
example “gpib0,19”.

• For the detailed information about the parameters of the SICL function iopen(), refer to
the online “Agilent SICL User’s Guide for Windows.”
Chapter 4 203

Creating and Downloading Waveform Files
Downloading Waveform Data
2. Download the I/Q data.
The following code sends the SCPI command and downloads the generated waveform data to the signal
generator.

2 Open a connection session with the signal generator to download the generated I/Q data.

 The SICL function iopen() is from the Agilent IO library and creates a session that returns
an identifier to id.

• If iopen() succeeds in establishing a connection, the function returns a valid session id.
The valid session id is not viewable, and can only be used by other SICL functions.

• If iopen() generates an error before making the connection, the session identifier is set
to zero. This occurs if the connection fails.

• To use this function in C++, you must include the standard header
#include <sicl.h> before the main() function.

3–7 If id = 0, the program prints out the error message and exits the program.

Line CodeDescription—Download the I/Q Data

8
9

10
11
12
13

14
15
16

int bytesToSend;
bytesToSend = numsamples*4;
char s[20];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA \"WFM1:FILE1\", #%d%d", strlen(s),
bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, iqbuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

Line Code Description—Download the I/Q data

8 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal
generator.

Line Code Description—Open a Connection Session
204 Chapter 4

Creating and Downloading Waveform Files
Downloading Waveform Data
9 Calculate the total number of bytes, and store the value in the integer variable defined in
line 8.

In this code, numsamples contains the number of waveform points, not the number of bytes.
Because it takes four bytes of data, two I bytes and two Q bytes, to create one waveform
point, we have to multiply numsamples by four. This is shown in the following example:

numsamples = 500 waveform points
numsamples × 4 = 2000 (four bytes per point)
bytesToSend = 2000 (numsamples × 4)

For information on setting the number of waveform points, see “1. Create I and Q data.” on
page 194.

10 Create a string large enough to hold the bytesToSend value as characters. In this code, string
s is set to 20 bytes (20 characters—one character equals one byte)

11 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and
parameters. In this code, we define the string length as 200 bytes (200 characters).

12 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = ”2000”

13 Store the SCPI command syntax and parameters in the string cmd. The SCPI command
prepares the signal generator to accept the data.

• sprintf() is a standard function in C++, which writes string data to a string variable.

• strlen() is a standard function in C++, which returns length of a string.

• If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA ”WFM1:FILE1\” #42000.

14 Send the SCPI command stored in the string cmd to the signal generator, which is
represented by the session id.

• iwrite() is a SICL function in Agilent IO library, which writes the data (block data)
specified in the string cmd to the signal generator (id).

• The third argument of iwrite(), strlen(cmd), informs the signal generator of the number
of bytes in the command string. The signal generator parses the string to determine the
number of I/Q data bytes it expects to receive.

• The fourth argument of iwrite(), zero, means there is no END indicator for the string.
This lets the session remain open, so the program can download the I/Q data.

Line Code Description—Download the I/Q data
Chapter 4 205

Creating and Downloading Waveform Files
Downloading Waveform Data
15 Send the generated waveform data stored in the I/Q array (iqbuffer) to the signal generator.

• iwrite() sends the data specified in iqbuffer to the signal generator (session identifier
specified in id).

• The third argument of iwrite(), bytesToSend, contains the length of the iqbuffer in bytes.
In this example, it is 2000.

• The fourth argument of iwrite(), 0, means there is no END indicator in the data.

In many programming languages, there are two methods to send SCPI commands and
data:

— Method 1 where the program stops the data download when it encounters the first
zero (END indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in
the data. This is the method used in our program.

For your programming language, you must find and use the equivalent of method two.
Otherwise you may only achieve a partial download of the I and Q data.

16 Send the terminating carriage (\n) as the last byte of the waveform data.

• iwrite() writes the data “\n” to the signal generator (session identifier specified in id).

• The third argument of iwrite(), 1, sends one byte to the signal generator.

• The fourth argument of iwrite(), 1, is the END indicator, which the program uses to
terminate the data download.

To verify the waveform data download, see “Loading, Playing, and Verifying a
Downloaded Waveform” on page 207.

Line Code Description—Download the I/Q data
206 Chapter 4

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform
Loading, Playing, and Verifying a Downloaded Waveform
The following procedures show how to perform the steps using either front-panel key presses or SCPI
commands.

Loading a File from Non-Volatile Memory
Select the downloaded I/Q file in non-volatile waveform memory (NVWFM) and load it into volatile
waveform memory (WFM1). The file comprises three items: I/Q data, marker file, and file header
information. Loading the I/Q file also loads the marker file and file header.

• From the front panel:

1. Press Mode > Dual ARB > Select Waveform > Waveform Segments > Load Store until Load highlights.

2. Highlight the I/Q file in the NVWFM catalog.

3. Press Load Segment From NVWFM Memory.

4. Press Return.

• Remotely send one of the following SCPI command to copy the I/Q file, marker file and file header
information:

:MEMory:COPY[NAME]"<NVWFM:file_name>","<WFM1:file_name>"
:MEMory:COPY[NAME]"<NVMKR:file_name>","<MKR1:file_name>"

NOTE When you copy a waveform file or marker file information from volatile or non-volatile
memory, the waveform and associated marker and header files are all copied. Conversely,
when you delete an I/Q file, the associated marker and header files are deleted. It is not
necessary to send separate commands to copy or delete the marker and header files.

Playing the Waveform
Play the waveform and use it to modulate the RF carrier.

1. Select the waveform from the volatile memory waveform list:

• From the front panel:

a. Press Mode > Dual ARB > Select Waveform.

b. Highlight the desired waveform.
Chapter 4 207

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform
c. Press Select Waveform.

• Remotely send the following SCPI command:

[:SOURce}:RADio:ARB:WAVeform "WFM1:<file_name>"

2. Play the waveform:

• From the front panel:

a. Press ARB Off On until On is highlighted.

b. Press Mod On/Off until the MOD ON annunciator appears on the display.

c. Press RF On/Off until the RF ON annunciator appears on the display.

Remotely send the following SCPI commands:

[:SOURce]:RADio:ARB[:STATe] ON
:OUTPut:MODulation[:STATe] ON
:OUTPut[:STATe] ON

Verifying the Waveform
Perform this procedure after completing the steps in the previous procedure, Playing the Waveform.

1. Connect the signal generator to an oscilloscope as shown in the figure.

2. Set an active marker point on the first waveform point for marker one.

• From the front panel:

a. Press ARB Setup > Marker Utilities > Set Markers.

b. Highlight the same waveform selected in “Playing the Waveform” on page 207.

c. Press Set Markers > Marker 1 2 3 4 to 1.

d. Press Set Markers Off All Points > Set Marker on First Point.
208 Chapter 4

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform
• Remotely send the following SCPI commands:

a. [:SOURce]:RADio:ARB:MARKer:CLEar:ALL "WFM1:<file_name>",1

b. [:SOURce]:RADio:ARB:MARKer:[SET]"WFM1:<file_name>",1,1,1,0.

3. Compare the oscilloscope display to the plot of the I and Q data from the text file you created when you
generated the data.

If the oscilloscope display, and the I and Q data plots differ, recheck your code. For detailed information
on programmatically creating and downloading waveform data, see “Creating Waveform Data” on
page 193 and “Downloading Waveform Data” on page 200. For information on the waveform data
requirements, see “Waveform Data Requirements” on page 168.
Chapter 4 209

Creating and Downloading Waveform Files
Using the Download Utilities
Using the Download Utilities
Agilent provides free download utilities to download waveform data into the signal generator. The table in
this section describes the capabilities of three such utilities.

For more information and to install the utilities, refer to the following URLs:

• Agilent Signal Studio Toolkit: www.agilent.com/find/signalstudio

This software provides a graphical interface for downloading files.

• Agilent IntuiLink for PSG/ESG Signal Generators: www.agilent.com/find/intuilink

This software places icons in the Microsoft Excel and Word toolbar. Use the icons to connect to the
signal generator and open a window for downloading files.

• PSG/ESG Download Assistant: www.agilent.com/find/downloadassistant

This software provides functions for the MATLAB environment to download waveform data.

Features Agilent Signal
Studio Toolkit

Agilent
IntuiLink

PSG/ESG
Download
Assistant

Downloads encrypted waveform files X

Downloads Signal Studio waveform files X1

1 Some Signal Studio products let you create and export waveform files to a PC. Signal Studio Toolkit downloads the exported
files.

Downloads complex MATLAB waveform data X

Downloads MATLAB files (.mat) X

Downloads unencrypted interleaved 16-bit I/Q files 2

2 ASCII or binary format.

X X

Interleaves and downloads earlier 14-bit E443xB I and Q

files 2

X X

Swaps bytes for little endian order X

Downloads user-created marker files X X X

Performs scaling X X X

Starts waveform play back X X

Sends SCPI Commands and Queries X X

Builds a waveform sequence X X
210 Chapter 4

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files
Downloading E443xB Signal Generator Files
To download earlier E443xB model I and Q files, use the same SCPI commands as if downloading files to
an E443xB signal generator. The signal generator automatically converts the E443xB files to the proper file
format as described in “Waveform Structure” on page 178 and stores them in the signal generator’s memory.
This conversion process causes the signal generator to take more time to download the earlier file format. To
minimize the time to convert earlier E443xB files to the proper file format, store E443xB file downloads to
volatile memory, and then transfer them over to non-volatile (NVWFM) memory.

NOTE You cannot extract waveform data downloaded as E443xB files.

E443xB Data Format
The following diagram describes the data format for the E443xB waveform files. This file structure can be
compared with the new style file format shown in “Waveform Structure” on page 178. If you create new
waveform files for the signal generator, use the format shown in “Waveform Data Requirements” on
page 168.

Storage Locations for E443xB ARB files
Place waveforms in either volatile memory or non-volatile memory. The signal generator supports the
E443xB directory structure for waveform file downloads.

Volatile Memory Storage Locations

• /user/arbi/
• /user/arbq/
Chapter 4 211

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files
Non-Volatile Memory Storage Locations

• /user/nvarbi/
• /user/nvarbq/

Loading files into the above directories (volatile or non-volatile memory) does not actually store them in
those directories. Instead, these directories function as “pipes” to the format translator. The signal generator
performs the following functions on the E443xB data:

• Converts the 14-bit I and Q data into 16-bit data.
Left shifts the data and appends two bits (zeros) before the least significant bit.

• Creates a maker file and places the marker information, bits 14 and 15 of the E443xB I data, into the
marker file for markers one and two. Markers three and four, within the new marker file, are set to zero
(off).

• Interleaves the 16-bit I and Q data creating one I/Q file.

• Creates a file header with all parameters set to unspecified (factory default file header setting).

1110110110111001 0010100111011001

1011011011100100

E443xB 14-Bit Data

 I data Q data

Left Shifts and Adds Zeros—Removes Marker and Reserved Bits

16-bit I data 16-bit Q data

Marker bits Reserved bits

(E4438C 16-Bit Data Format)

Bits addedBits added

11

Marker bits removed

101001110110010000

Reserved bits removed

14 data bits14 data bits

0011

Places the I Marker Bits into the E4438C Marker File

Marker 3 and 4 bits
Marker 1 and 2 bits from the E443xB I data
212 Chapter 4

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files
SCPI Commands
Use the following commands to download E443xB waveform files into the signal generator.

NOTE Before downloading waveform data into volatile memory, turn off the Dual ARB player by
pressing Mode > Dual ARB > ARB Off On until Off is highlighted or send the SCPI command
[:SOURce]:RADio:ARB[:STATe] OFF.

The variables <I waveform block data> and <Q waveform block data> represents data in the
E443xB file format. The string variable <file_name> is the name of the I and Q data file. After
downloading the data, the signal generator associates a file header and marker file with the I/Q data file.

Extraction Method/
Memory Type

Command Syntax Options

SCPI/
volatile memory

:MMEM:DATA "ARBI:<file_name>", <I waveform block data>
:MMEM:DATA "ARBQ:<file_name>", <Q waveform data>

SCPI/
non-volatile memory

:MMEM:DATA "NVARBI:<file_name>", <I waveform block data>
:MMEM:DATA "NVARBQ:<file_name>", <Q waveform block data>
Chapter 4 213

Creating and Downloading Waveform Files
Programming Examples
Programming Examples
The programming examples use GPIB or LAN interfaces and are written in the following languages:

• C++
• MATLAB
• Visual Basic
• HP Basic

See Chapter 1 of this programming guide for information on interfaces and I/O libraries.

The example programs are also available on the signal generator Documentation CD-ROM, which allows
you to cut and paste the examples into an editor.

C++ Programming Examples
This section contains the following programming examples:

• “Creating and Storing Offset I/Q Data—Big and Little Endian Order” on page 215

• “Creating and Storing I/Q Data—Little Endian Order” on page 220

• “Creating and Downloading I/Q Data—Big and Little Endian Order” on page 222

• “Importing and Downloading I/Q Data—Big Endian Order” on page 227

• “Importing and Downloading Using VISA—Big Endian Order” on page 230

• “Importing, Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian
Order” on page 235
214 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
Creating and Storing Offset I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “offset_iq_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) follows the same coding
algorithm as the MATLAB programming example “Creating and Storing I/Q Waveform” on page 243 and
performs the following functions:

• error checking
• data creation
• data normalization
• data scaling
• I/Q signal offset from the carrier (single sideband suppressed carrier signal)
• byte swapping and interleaving for little endian order data
• I and Q interleaving for big endian order data
• binary data file storing to a PC or workstation
• reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++ download
programming examples to download the file to the signal generator.

// This C++ example shows how to

// 1.) Create a simple IQ waveform

// 2.) Save the waveform into the ESG/PSG Internal Arb format

// This format is the for the E4438C, E8267C, E8267D

// This format will not work with the ESG E443xB

// 3.) Load the internal Arb format file into an array

#include <stdio.h>

#include <string.h>

#include <math.h>

const int POINTS = 1000; // Size of waveform

const char *computer = “PCWIN”;

int main(int argc, char* argv[])

{

Chapter 4 215

Creating and Downloading Waveform Files
Programming Examples
// 1.) Create Simple IQ Signal ***

// This signal is a single tone on the upper

// side of the carrier and is usually refered to as

// a Single Side Band Suppressed Carrier (SSBSC) signal.

// It is nothing more than a cosine wavefomm in I

// and a sine waveform in Q.

int points = POINTS; // Number of points in the waveform

int cycles = 101; // Determines the frequency offset from the carrier

double Iwave[POINTS]; // I waveform

double Qwave[POINTS]; // Q waveform

short int waveform[2*POINTS]; // Holds interleaved I/Q data

double maxAmp = 0; // Used to Normalize waveform data

double minAmp = 0; // Used to Normalize waveform data

double scale = 1;

char buf; // Used for byte swapping

char *pChar; // Used for byte swapping

bool PC = true; // Set flag as appropriate

double phaseInc = 2.0 * 3.141592654 * cycles / points;

double phase = 0;

int i = 0;

for(i=0; i<points; i++)

{

phase = i * phaseInc;

Iwave[i] = cos(phase);

Qwave[i] = sin(phase);

}

// 2.) Save waveform in internal format *********************************

// Convert the I and Q data into the internal arb format

// The internal arb format is a single waveform containing interleaved IQ
216 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
// data. The I/Q data is signed short integers (16 bits).

// The data has values scaled between +-32767 where

// DAC Value Description

// 32767 Maximum positive value of the DAC

// 0 Zero out of the DAC

// -32767 Maximum negative value of the DAC

// The internal arb expects the data bytes to be in Big Endian format.

// This is opposite of how short integers are saved on a PC (Little Endian).

// For this reason the data bytes are swapped before being saved.

// Find the Maximum amplitude in I and Q to normalize the data between +-1

maxAmp = Iwave[0];

minAmp = Iwave[0];

for(i=0; i<points; i++)

{

 if(maxAmp < Iwave[i])

maxAmp = Iwave[i];

 else if(minAmp > Iwave[i])

minAmp = Iwave[i];

 if(maxAmp < Qwave[i])

maxAmp = Qwave[i];

 else if(minAmp > Qwave[i])

minAmp = Qwave[i];

}

maxAmp = fabs(maxAmp);

minAmp = fabs(minAmp);

if(minAmp > maxAmp)

maxAmp = minAmp;

// Convert to short integers and interleave I/Q data

scale = 32767 / maxAmp; // Watch out for divide by zero.
Chapter 4 217

Creating and Downloading Waveform Files
Programming Examples
for(i=0; i<points; i++)

{

waveform[2*i] = (short)floor(Iwave[i]*scale + 0.5);

waveform[2*i+1] = (short)floor(Qwave[i]*scale + 0.5);

}

// If on a PC swap the bytes to Big Endian

if(strcmp(computer,”PCWIN”) == 0)

//if(PC)

{

pChar = (char *)&waveform[0]; // Character pointer to short int data

for(i=0; i<2*points; i++)

{

buf = *pChar;

*pChar = *(pChar+1);

*(pChar+1) = buf;

pChar+= 2;

}

}

// Save the data to a file
// Use FTP or one of the download assistants to download the file to the
// signal generator

char *filename = “C:\\Temp\\EsgTestFile”;

FILE *stream = NULL;

stream = fopen(filename, “w+b”);// Open the file

if (stream==NULL) perror (“Cannot Open File”);

int numwritten = fwrite((void *)waveform, sizeof(short), points*2, stream);

fclose(stream);// Close the file

// 3.) Load the internal Arb format file *********************************

// This process is just the reverse of saving the waveform

// Read in waveform as unsigned short integers.

// Swap the bytes as necessary

// Normalize between +-1
218 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
// De-interleave the I/Q Data

// Open the file and load the internal format data

stream = fopen(filename, “r+b”);// Open the file

if (stream==NULL) perror (“Cannot Open File”);

int numread = fread((void *)waveform, sizeof(short), points*2, stream);

fclose(stream);// Close the file

// If on a PC swap the bytes back to Little Endian

if(strcmp(computer,”PCWIN”) == 0)

{

pChar = (char *)&waveform[0]; // Character pointer to short int data

for(i=0; i<2*points; i++)

{

buf = *pChar;

*pChar = *(pChar+1);

*(pChar+1) = buf;

pChar+= 2;

}
}

// Normalize De-Interleave the IQ data

double IwaveIn[POINTS];

double QwaveIn[POINTS];

for(i=0; i<points; i++)

{

IwaveIn[i] = waveform[2*i] / 32767.0;

QwaveIn[i] = waveform[2*i+1] / 32767.0;

}

return 0;

}

Chapter 4 219

Creating and Downloading Waveform Files
Programming Examples
Creating and Storing I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is “CreateStore_Data_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrior 3.0) performs the following
functions:

• error checking
• data creation
• byte swapping and interleaving for little endian order data
• binary data file storing to a PC or workstation

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++ download
programming examples to download the file to the signal generator.

#include <iostream>

#include <fstream>

#include <math.h>

#include <stdlib.h>

using namespace std;

int main (void)

{

ofstream out_stream; // write the I/Q data to a file

const unsigned int SAMPLES =200; // number of sample pairs in the waveform

 const short AMPLITUDE = 32000; // amplitude between 0 and full scale dac value

 const double two_pi = 6.2831853;

 //allocate buffer for waveform

short* iqData = new short[2*SAMPLES];// need two bytes for each integer

if (!iqData)

{

cout << "Could not allocate data buffer." << endl;

return 1;

}

220 Chapter 4

Creating and Downloading Waveform Files
Programming Examples

 out_stream.open("IQ_data");// create a data file

if (out_stream.fail())

{

cout << "Input file opening failed" << endl;

exit(1);

}

//generate the sample data for I and Q. The I channel will have a sine

 //wave and the Q channel will a cosine wave.

 for (int i=0; i<SAMPLES; ++i)

 {

 iqData[2*i] = AMPLITUDE * sin(two_pi*i/(float)SAMPLES);

 iqData[2*i+1] = AMPLITUDE * cos(two_pi*i/(float)SAMPLES);

 }

// make sure bytes are in the order MSB(most significant byte) first. (PC only).

char* cptr = (char*)iqData;// cast the integer values to characters

for (int i=0; i<(4*SAMPLES); i+=2)// 4*SAMPLES

{

char temp = cptr[i];// swap LSB and MSB bytes

cptr[i]=cptr[i+1];

cptr[i+1]=temp;

}

 // now write the buffer to a file

out_stream.write((char*)iqData, 4*SAMPLES);

return 0;

}

Chapter 4 221

Creating and Downloading Waveform Files
Programming Examples
Creating and Downloading I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “CreateDwnLd_Data_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

• error checking
• data creation
• data scaling
• text file creation for viewing and debugging data
• byte swapping and interleaving for little endian order data
• interleaving for big endian order data
• data saving to an array (data block)
• data block download to the signal generator

// This C++ program is an example of creating and scaling

// I and Q data, and then downloading the data into the

// signal generator as an interleaved I/Q file.

// This example uses a sine and cosine wave as the I/Q

// data.

//

// Include the standard headers for SICL programming

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString =”lan[galqaDhcp1]”;

//char* instOpenString =”gpib0,19”;

// Pick some maximum number of samples, based on the

// amount of memory in your computer and the signal generator.

const int NUMSAMPLES=500;
222 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
int main(int argc, char* argv[])

{

 // Create a text file to view the waveform

 // prior to downloading it to the signal generator.

 // This verifies that the data looks correct.

 char *ofile = “c:\\temp\\iq.txt”;

 // Create arrays to hold the I and Q data

 int idata[NUMSAMPLES];

 int qdata[NUMSAMPLES];

 // save the number of sampes into numsamples

 int numsamples = NUMSAMPLES;

 // Fill the I and Q buffers with the sample data

 for(int index=0; index<numsamples; index++)

 {

 // Create the I and Q data for the number of waveform

 // points and Scale the data (20000 * ...) as a precentage

 // of the DAC full scale (-32768 to 32767). This example

 // scales to approximately 70% of full scale.

 idata[index]=23000 * sin((4*3.14*index)/numsamples);

 qdata[index]=23000 * cos((4*3.14*index)/numsamples);

 }

 // Print the I and Q values to a text file. View the data

 // to see if its correct and if needed, plot the data in a

 // spreadsheet to help spot any problems.

 FILE *outfile = fopen(ofile, “w”);
Chapter 4 223

Creating and Downloading Waveform Files
Programming Examples
 if (outfile==NULL) perror (“Error opening file to write”);

 for(index=0; index<numsamples; index++)

 {

 fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);

 }

 fclose(outfile);

 // Little endian order data, use the character array and for loop.

// If big endian order, comment out this character array and for loop,

// and use the next loop (Big Endian order data).

 // We need a buffer to interleave the I and Q data.

// 4 bytes to account for 2 I bytes and 2 Q bytes.

char iqbuffer[NUMSAMPLES*4];

// Interleave I and Q, and swap bytes from little

 // endian order to big endian order.

 for(index=0; index<numsamples; index++)

 {

 int ivalue = idata[index];

 int qvalue = qdata[index];

 iqbuffer[index*4] = (ivalue >> 8) & 0xFF; // high byte of i

 iqbuffer[index*4+1] = ivalue & 0xFF; // low byte of i

 iqbuffer[index*4+2] = (qvalue >> 8) & 0xFF; // high byte of q

 iqbuffer[index*4+3] = qvalue & 0xFF; // low byte of q

 }

 // Big Endian order data, uncomment the following lines of code.

 // Interleave the I and Q data.

 // short iqbuffer[NUMSAMPLES*2]; // Big endian order, uncomment this line
224 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
 // for(index=0; index<numsamples; index++) // Big endian order, uncomment this line

 // { // Big endian order, uncomment this line

 // iqbuffer[index*2] = idata[index]; // Big endian order, uncomment this line

 // iqbuffer[index*2+1] = qdata[index]; // Big endian order, uncomment this line

 // } // Big endian order, uncomment this line

 // Open a connection to write to the instrument

 INST id=iopen(instOpenString);

 if (!id)

 {

 fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

 return -1;

 }

 // Declare variables to hold portions of the SCPI command

 int bytesToSend;

 char s[20];

 char cmd[200];

 bytesToSend = numsamples*4; // calculate the number of bytes

 sprintf(s, “%d”, bytesToSend); // create a string s with that number of bytes

 // The SCPI command has four parts.

 // Part 1 = :MEM:DATA “filename”,#

 // Part 2 = length of Part 3 when written to a string

 // Part 3 = length of the data in bytes. This is in s from above.

 // Part 4 = the buffer of data

 // Build parts 1, 2, and 3 for the I and Q data.

 sprintf(cmd, “:MEM:DATA \”WFM1:FILE1\”, #%d%d”, strlen(s), bytesToSend);

 // Send parts 1, 2, and 3

 iwrite(id, cmd, strlen(cmd), 0, 0);
Chapter 4 225

Creating and Downloading Waveform Files
Programming Examples
 // Send part 4. Be careful to use the correct command here. In many

 // programming languages, there are two methods to send SCPI commands:

 // Method 1 = stop at the first ‘0’ in the data

 // Method 2 = send a fixed number of bytes, ignoring ‘0’ in the data.

 // You must find and use the correct command for Method 2.

 iwrite(id, iqbuffer, bytesToSend, 0, 0);

 // Send a terminating carriage return

 iwrite(id, “\n”, 1, 1, 0);

printf(“Loaded file using the E4438C, E8267C and E8267D format\n”);

return 0;

}

226 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
Importing and Downloading I/Q Data—Big Endian Order

On the documentation CD, this programming example’s name is “impDwnLd_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrier 3.0) assumes that the data is in
big endian order and performs the following functions:

• error checking
• binary file importing from the PC or workstation
• binary file download to the signal generator

// Description: Send a file in blocks of data to a signal generator

//

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// ATTENTION:

// - Configure these three lines appropriately for your instrument

// and use before compiling and running
//

char* instOpenString = "gpib7,19"; //for LAN replace with “lan[<hostname or IP address>]”

const char* localSrcFile = "D:\\home\\TEST_WAVE"; //enter file location on PC/workstation

const char* instDestFile = "/USER/BBG1/WAVEFORM/TEST_WAVE"; //for non-volatile memory
 //remove BBG1 from file path

// Size of the copy buffer

const int BUFFER_SIZE = 100*1024;

int

main()

{

 INST id=iopen(instOpenString);

 if (!id)

 {

 fprintf(stderr, "iopen failed (%s)\n", instOpenString);
Chapter 4 227

Creating and Downloading Waveform Files
Programming Examples
 return -1;

 }

 FILE* file = fopen(localSrcFile, "rb");

 if (!file)

 {

 fprintf(stderr, "Could not open file: %s\n", localSrcFile);

 return 0;

 }

 if(fseek(file, 0, SEEK_END) < 0)

 {

 fprintf(stderr,"Cannot seek to the end of file.\n");

 return 0;

 }

 long lenToSend = ftell(file);

 printf("File size = %d\n", lenToSend);

 if (fseek(file, 0, SEEK_SET) < 0)

 {

 fprintf(stderr,"Cannot seek to the start of file.\n");

 return 0;

 }

 char* buf = new char[BUFFER_SIZE];

 if (buf && lenToSend)

 {

 // Prepare and send the SCPI command header

 char s[20];

 sprintf(s, "%d", lenToSend);

 int lenLen = strlen(s);
228 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
 char s2[256];

 sprintf(s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen, lenToSend);

 iwrite(id, s2, strlen(s2), 0, 0);

 // Send file in BUFFER_SIZE chunks

 long numRead;

 do

 {

 numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

 iwrite(id, buf, numRead, 0, 0);

 } while (numRead == BUFFER_SIZE);

 // Send the terminating newline and EOM

 iwrite(id, "\n", 1, 1, 0);

 delete [] buf;

 }

 else

 {

 fprintf(stderr, "Could not allocate memory for copy buffer\n");

 }

 fclose(file);

 iclose(id);

 return 0;

}

Chapter 4 229

Creating and Downloading Waveform Files
Programming Examples
Importing and Downloading Using VISA—Big Endian Order

On the documentation CD, this programming example’s name is “DownLoad_Visa_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) assumes that the data is in big
endian order and performs the following functions:

• error checking
• binary file importing from the PC or workstation
• binary file download to the signal generator’s non-volatile memory

To load the waveform data to volatile (WFM1) memory, change the instDestfile declaration to:
“USER/BBG1/WAVEFORM/”.

//***

// PROGRAM NAME:Download_Visa_c++.cpp

//

// PROGRAM DESCRIPTION:Sample test program to download ARB waveform data. Send a

// file in chunks of ascii data to the signal generator.

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the LAN/TCPIP to download a file to the baseband generator's

// non-volatile memory. The program allocates a memory buffer on the PC or

// workstation of 102400 bytes (100*1024 bytes). The actual size of the buffer is

// limited by the memory on your PC or workstation, so the buffer size can be

// increased or decreased to meet your system limitations.

//

// While this program uses the LAN/TCPIP to download a waveform file into

// non-volatile memory, it can be modified to store files in volatile memory

// WFM1 using GPIB by setting the instrOpenString = "TCPIP0::xxx.xxx.xxx.xxx::INSTR"

// declaration with "GPIB::19::INSTR"

//

// The program also includes some error checking to alert you when problems arise

// while trying to download files. This includes checking to see if the file exists.

//**

// IMPORTANT: Replace the xxx.xxx.xxx.xxx IP address in the instOpenString declaration
230 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
// in the code below with the IP address of your signal generator. (or you can use the

// instrument's hostname). Replace the localSrcFile and instDestFile directory paths

// as needed.

//**

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "visa.h"

//

// IMPORTANT:

// Configure the following three lines correctly before compiling and running

char* instOpenString ="TCPIP0::xxx.xxx.xxx.xxx::INSTR"; // your instrument's IP address

const char* localSrcFile = "\\Files\\IQ_DataC";

const char* instDestFile = "/USER/WAVEFORM/IQ_DataC";

const int BUFFER_SIZE = 100*1024;// Size of the copy buffer

int main(int argc, char* argv[])

{

 ViSession defaultRM, vi;

 ViStatus status = 0;

 status = viOpenDefaultRM(&defaultRM);// Open the default resource manager

 // TO DO: Error handling here

 status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL, &vi);
Chapter 4 231

Creating and Downloading Waveform Files
Programming Examples
 if (status)// If any errors then display the error and exit the program

 {

 fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

return -1;

 }

 FILE* file = fopen(localSrcFile, "rb");// Open local source file for binary reading

 if (!file) // If any errors display the error and exit the program

 {

 fprintf(stderr, "Could not open file: %s\n", localSrcFile);

return 0;

 }

 if(fseek(file, 0, SEEK_END) < 0)

 {

 fprintf(stderr,"Cannot lseek to the end of file.\n");

 return 0;

 }

 long lenToSend = ftell(file);// Number of bytes in the file

 printf("File size = %d\n", lenToSend);

 if (fseek(file, 0, SEEK_SET) < 0)

 {

 fprintf(stderr,"Cannot lseek to the start of file.\n");

 return 0;

 }

 unsigned char* buf = new unsigned char[BUFFER_SIZE]; // Allocate char buffer memory
232 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
 if (buf && lenToSend)

 {

 // Do not send the EOI (end of instruction) terminator on any write except the

 // last one

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 0);

 // Prepare and send the SCPI command header

 char s[20];

 sprintf(s, "%d", lenToSend);

 int lenLen = strlen(s);

 unsigned char s2[256];

// Write the command mmem:data and the header.The number lenLen represents the

// number of bytes and the actual number of bytes is the variable lenToSend

 sprintf((char*)s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen, lenToSend);

// Send the command and header to the signal generator

 viWrite(vi, s2, strlen((char*)s2), 0);

 long numRead;

// Send file in BUFFER_SIZE chunks to the signal generator

 do

 {

 numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);
Chapter 4 233

Creating and Downloading Waveform Files
Programming Examples
 viWrite(vi, buf, numRead, 0);

 } while (numRead == BUFFER_SIZE);

 // Send the terminating newline and EOI

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 1);

 char* newLine = "\n";

 viWrite(vi, (unsigned char*)newLine, 1, 0);

 delete [] buf;

 }

 else

 {

 fprintf(stderr, "Could not allocate memory for copy buffer\n");

 }

 fclose(file);

 viClose(vi);

 viClose(defaultRM);

 return 0;

}

234 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
Importing, Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “impDwnLd2_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

• error checking
• binary file importing (earlier E443xB or current model signal generators)
• byte swapping and interleaving for little endian order data
• data interleaving for big endian order data
• data scaling
• binary file download for earlier E443xB data or current signal generator formatted data

// This C++ program is an example of loading I and Q

// data into an E443xB, E4438C, E8267C, or E8267D signal

// generator.

//

// It reads the I and Q data from a binary data file

// and then writes the data to the instrument.

// Include the standard headers for SICL programming

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString =”gpib0,19”;

// Pick some maximum number of samples, based on the

// amount of memory in your computer and your waveforms.

const int MAXSAMPLES=50000;

int main(int argc, char* argv[])
Chapter 4 235

Creating and Downloading Waveform Files
Programming Examples
{

 // These are the I and Q input files.

 // Some compilers will allow ‘/’ in the directory

 // names. Older compilers might need ‘\\’ in the

 // directory names. It depends on your operating system

 // and compiler.

 char *ifile = “c:\\SignalGenerator\\data\\BurstA1I.bin”;

 char *qfile = “c:\\SignalGenerator\\data\\BurstA1Q.bin”;

 // This is a text file to which we will write the

 // I and Q data just for debugging purposes. It is

 // a good programming practice to check your data

 // in this way before attempting to write it to

 // the instrument.

 char *ofile = “c:\\SignalGenerator\\data\\iq.txt”;

 // Create arrays to hold the I and Q data

 int idata[MAXSAMPLES];

 int qdata[MAXSAMPLES];

 // Often we must modify, scale, or offset the data

 // before loading it into the instrument. These

 // buffers are used for that purpose. Since each

 // sample is 16 bits, and a character only holds

 // 8 bits, we must make these arrays twice as long

 // as the I and Q data arrays.

 char ibuffer[MAXSAMPLES*2];

 char qbuffer[MAXSAMPLES*2];

 // For the E4438C, we might also need to interleave

 // the I and Q data. This buffer is used for that

 // purpose. In this case, this buffer must hold
236 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
 // both I and Q data so it needs to be four times

 // as big as the data arrays.

 char iqbuffer[MAXSAMPLES*4];

 // Declare variables which will be used later

 bool done;

 FILE *infile;

 int index, numsamples, i1, i2, ivalue;

 // In this example, we’ll assume the data files have

 // the I and Q data in binary form as unsigned 16 bit integers.

 // This next block reads those binary files. If your

 // data is in some other format, then replace this block

 // with appropriate code for reading your format.

// First read I values

 done = false;

 index = 0;

 infile = fopen(ifile, “rb”);

 if (infile==NULL) perror (“Error opening file to read”);

 while(!done)

 {

 i1 = fgetc(infile); // read the first byte

 if(i1==EOF) break;

 i2 = fgetc(infile); // read the next byte

 if(i2==EOF) break;

 ivalue=i1+i2*256; // put the two bytes together

 // note that the above format is for a little endian

 // processor such as Intel. Reverse the order for

 // a big endian processor such as Motorola, HP, or Sun

 idata[index++]=ivalue;

 if(index==MAXSAMPLES) break;

 }
Chapter 4 237

Creating and Downloading Waveform Files
Programming Examples
 fclose(infile);

// Then read Q values

 index = 0;

 infile = fopen(qfile, “rb”);

 if (infile==NULL) perror (“Error opening file to read”);

 while(!done)

 {

 i1 = fgetc(infile); // read the first byte

 if(i1==EOF) break;

 i2 = fgetc(infile); // read the next byte

 if(i2==EOF) break;

 ivalue=i1+i2*256; // put the two bytes together

 // note that the above format is for a little endian

 // processor such as Intel. Reverse the order for

 // a big endian processor such as Motorola, HP, or Sun

 qdata[index++]=ivalue;

 if(index==MAXSAMPLES) break;

 }

 fclose(infile);

 // Remember the number of samples which were read from the file.

 numsamples = index;

 // Print the I and Q values to a text file. If you are

 // having trouble, look in the file and see if your I and

 // Q data looks correct. Plot the data from this file if

 // that helps you to diagnose the problem.

 FILE *outfile = fopen(ofile, “w”);

 if (outfile==NULL) perror (“Error opening file to write”);

 for(index=0; index<numsamples; index++)

 {
238 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
 fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);

 }

 fclose(outfile);

 // The E443xB, E4438C, E8267C or E8267D all use big-endian

 // processors. If your software is running on a little-endian

 // processor such as Intel, then you will need to swap the

 // bytes in the data before sending it to the signal generator.

 // The arrays ibuffer and qbuffer are used to hold the data

 // after any byte swapping, shifting or scaling.

 // In this example, we’ll assume that the data is in the format

 // of the E443xB without markers. In other words, the data

 // is in the range 0-16383.

 // 0 gives negative full-scale output

 // 8192 gives 0 V output

 // 16383 gives positive full-scale output

 // If this is not the scaling of your data, then you will need

 // to scale your data appropriately in the next two blocks.

 // ibuffer and qbuffer will hold the data in the E443xB format.

 // No scaling is needed, however we need to swap the byte order

 // on a little endian computer. Remove the byte swapping

 // if you are using a big endian computer.

 for(index=0; index<numsamples; index++)

 {

 int ivalue = idata[index];

 int qvalue = qdata[index];

 ibuffer[index*2] = (ivalue >> 8) & 0xFF; // high byte of i

 ibuffer[index*2+1] = ivalue & 0xFF; // low byte of i

 qbuffer[index*2] = (qvalue >> 8) & 0xFF; // high byte of q
Chapter 4 239

Creating and Downloading Waveform Files
Programming Examples
 qbuffer[index*2+1] = qvalue & 0xFF; // low byte of q

 }

 // iqbuffer will hold the data in the E4438C, E8267C, E8267D

 // format. In this format, the I and Q data is interleaved.

 // The data is in the range -32768 to 32767.

 // -32768 gives negative full-scale output

 // 0 gives 0 V output

 // 32767 gives positive full-scale output

 // From these ranges, it appears you should offset the

 // data by 8192 and scale it by 4. However, due to the

 // interpolators in these products, it is better to scale

 // the data by a number less than four. Commonly a good

 // choice is 70% of 4 which is 2.8.

 // By default, the signal generator scales data to 70%

 // If you scale the data here, you may want to change the

// signal generator scaling to 100%

// Also we need to swap the byte order on a little endian

 // computer. This code also works for big endian order data

 // since it swaps bytes based on the order.

 for(index=0; index<numsamples; index++)

 {

 int iscaled = 2.8*(idata[index]-8192); // shift and scale

 int qscaled = 2.8*(qdata[index]-8192); // shift and scale

 iqbuffer[index*4] = (iscaled >> 8) & 0xFF; // high byte of i

 iqbuffer[index*4+1] = iscaled & 0xFF; // low byte of i

 iqbuffer[index*4+2] = (qscaled >> 8) & 0xFF; // high byte of q

 iqbuffer[index*4+3] = qscaled & 0xFF; // low byte of q

 }

 // Open a connection to write to the instrument

 INST id=iopen(instOpenString);
240 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
 if (!id)

 {

 fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

 return -1;

 }

 // Declare variables which will be used later

 int bytesToSend;

 char s[20];

 char cmd[200];

 // The E4438C, E8267C and E8267D accept the E443xB format.

 // so we can use this next section on any of these signal generators.

 // However the E443xB format only uses 14 bits.

 bytesToSend = numsamples*2; // calculate the number of bytes

 sprintf(s, “%d”, bytesToSend); // create a string s with that number of bytes

 // The SCPI command has four parts.

 // Part 1 = :MEM:DATA “filename”,

 // Part 2 = length of Part 3 when written to a string

 // Part 3 = length of the data in bytes. This is in s from above.

 // Part 4 = the buffer of data

 // Build parts 1, 2, and 3 for the I data.

 sprintf(cmd, “:MEM:DATA \”ARBI:FILE1\”, #%d%d”, strlen(s), bytesToSend);

 // Send parts 1, 2, and 3

 iwrite(id, cmd, strlen(cmd), 0, 0);

 // Send part 4. Be careful to use the correct command here. In many

 // programming languages, there are two methods to send SCPI commands:

 // Method 1 = stop at the first ‘0’ in the data

 // Method 2 = send a fixed number of bytes, ignoring ‘0’ in the data.
Chapter 4 241

Creating and Downloading Waveform Files
Programming Examples
 // You must find and use the correct command for Method 2.

 iwrite(id, ibuffer, bytesToSend, 0, 0);

 // Send a terminating carriage return

 iwrite(id, “\n”, 1, 1, 0);

 // Identical to the section above, except for the Q data.

 sprintf(cmd, “:MEM:DATA \”ARBQ:FILE1\”, #%d%d”, strlen(s),bytesToSend);

 iwrite(id, cmd, strlen(cmd), 0, 0);

 iwrite(id, qbuffer, bytesToSend, 0, 0);

 iwrite(id, “\n”, 1, 1, 0);

 printf(“Loaded FILE1 using the E443xB format\n”);

 // The E4438C, E8267C and E8267D have a newer faster format which

 // allows 16 bits to be used. However this format is not accepted in

 // the E443xB. Therefore do not use this next section for the E443xB.

 printf(“Note: Loading FILE2 on a E443xB will cause \”ERROR: 208, I/O error\”\n”);

 // Identical to the I and Q sections above except

 // a) The I and Q data are interleaved

 // b) The buffer of I+Q is twice as long as the I buffer was.

 // c) The SCPI command uses WFM1 instead of ARBI and ARBQ.

 bytesToSend = numsamples*4;

 sprintf(s, “%d”, bytesToSend);

 sprintf(cmd, “:mem:data \”WFM1:FILE2\”, #%d%d”, strlen(s),bytesToSend);

 iwrite(id, cmd, strlen(cmd), 0, 0);

 iwrite(id, iqbuffer, bytesToSend, 0, 0);

 iwrite(id, “\n”, 1, 1, 0);

printf(“Loaded FILE2 using the E4438C, E8267C and E8267D format\n”);

return 0;

}

242 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
MATLAB Programming Example

Creating and Storing I/Q Waveform

On the documentation CD, this programming example’s name is “offset_iq_ml.m.”

This MATLAB programming example follows the same coding algorithm as the C++ programming example
“Creating and Storing Offset I/Q Data—Big and Little Endian Order” on page 215 and performs the
following functions:

• error checking
• data creation
• data normalization
• data scaling
• I/Q signal offset from the carrier (single sideband suppressed carrier signal)
• byte swapping and interleaving for little endian order data
• I and Q interleaving for big endian order data
• binary data file storing to a PC or workstation
• reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

function main

% Using MatLab this example shows how to

% 1.) Create a simple IQ waveform

% 2.) Save the waveform into the ESG/PSG Internal Arb format

% This format is for the E4438C, E8267C, and E8267D

% This format will not work with the earlier E443xB ESG

% 3.) Load the internal Arb format file into a MatLab array

% 1.) Create Simple IQ Signal ***

% This signal is a single tone on the upper

% side of the carrier and is usually refered to as

% a Single Side Band Suppressed Carrier (SSBSC) signal.

% It is nothing more than a cosine wavefomm in I

% and a sine waveform in Q.

%

points = 1000; % Number of points in the waveform

cycles = 101; % Determines the frequency offset from the carrier
Chapter 4 243

Creating and Downloading Waveform Files
Programming Examples
phaseInc = 2*pi*cycles/points;

phase = phaseInc * [0:points-1];

Iwave = cos(phase);

Qwave = sin(phase);

% 2.) Save waveform in internal format *********************************

% Convert the I and Q data into the internal arb format

% The internal arb format is a single waveform containing interleaved IQ

% data. The I/Q data is signed short integers (16 bits).

% The data has values scaled between +-32767 where

% DAC Value Description

% 32767 Maximum positive value of the DAC

% 0 Zero out of the DAC

% -32767 Maximum negative value of the DAC

% The internal arb expects the data bytes to be in Big Endian format.

% This is opposite of how short integers are saved on a PC (Little Endian).

% For this reason the data bytes are swapped before being saved.

% Interleave the IQ data

waveform(1:2:2*points) = Iwave;

waveform(2:2:2*points) = Qwave;

%[Iwave;Qwave];

%waveform = waveform(:)’;

% Normalize the data between +-1

waveform = waveform / max(abs(waveform)); % Watch out for divide by zero.

% Scale to use full range of the DAC

waveform = round(waveform * 32767); % Data is now effectively signed short integer
values
244 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
% waveform = round(waveform * (32767 / max(abs(waveform)))); % More efficient than
previous two steps!

% PRESERVE THE BIT PATTERN but convert the waveform to

% unsigned short integers so the bytes can be swapped.

% Note: Can’t swap the bytes of signed short integers in MatLab.

waveform = uint16(mod(65536 + waveform,65536)); %

% If on a PC swap the bytes to Big Endian

if strcmp(computer, ‘PCWIN’)

 waveform = bitor(bitshift(waveform,-8),bitshift(waveform,8));

end

% Save the data to a file

% Note: The waveform is saved as unsigned short integers. However,

% the acual bit pattern is that of signed short integers and

% that is how the ESG/PSG interprets them.

filename = ‘C:\Temp\EsgTestFile’;

[FID, message] = fopen(filename,’w’);% Open a file to write data

if FID == -1 error(‘Cannot Open File’); end

fwrite(FID,waveform,’unsigned short’);% write to the file

fclose(FID); % close the file

% 3.) Load the internal Arb format file *********************************

% This process is just the reverse of saving the waveform

% Read in waveform as unsigned short integers.

% Swap the bytes as necessary

% Convert to signed integers then normalize between +-1

% De-interleave the I/Q Data

% Open the file and load the internal format data

[FID, message] = fopen(filename,’r’);% Open file to read data
Chapter 4 245

Creating and Downloading Waveform Files
Programming Examples
if FID == -1 error(‘Cannot Open File’); end

[internalWave,n] = fread(FID, ‘uint16’);% read the IQ file

fclose(FID);% close the file

internalWave = internalWave’; % Conver from column array to row array

% If on a PC swap the bytes back to Little Endian

if strcmp(computer, ‘PCWIN’) % Put the bytes into the correct order

 internalWave= bitor(bitshift(internalWave,-8),bitshift(bitand(internalWave,255),8));

end

% convert unsigned to signed representation

internalWave = double(internalWave);

tmp = (internalWave > 32767.0) * 65536;

iqWave = (internalWave - tmp) ./ 32767; % and normalize the data

% De-Interleave the IQ data

IwaveIn = iqWave(1:2:n);

QwaveIn = iqWave(2:2:n);
246 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
Visual Basic Programming Examples

Creating I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is “Create_IQData_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, uses little endian order data, and
performs the following functions:

• error checking
• I an Q integer array creation
• I an Q data interleaving
• byte swapping to convert to big endian order
• binary data file storing to a PC or workstation

Once the file is created, you can download the file to the signal generator using FTP (see “FTP Procedures”
on page 191).

'***

' Program Name: Create_IQData

' Program Description: This program creates a sine and cosine wave using 200 I/Q data

' samples. Each I and Q value is represented by a 2 byte integer. The sample points are

' calculated, scaled using the AMPLITUDE constant of 32767, and then stored in an array

' named iq_data. The AMPLITUDE scaling allows for full range I/Q modulator DAC values.

' Data must be in 2's complemant, MSB/LSB big-endian format. If your PC uses LSB/MSB

' format, then the integer bytes must be swapped. This program converts the integer

' array values to hex data types and then swaps the byte positions before saving the

' data to the IQ_DataVB file.

'**

Private Sub Create_IQData()

Dim index As Integer

Dim AMPLITUDE As Integer

Dim pi As Double

Dim loByte As Byte

Dim hiByte As Byte

Dim loHex As String

Dim hiHex As String

Dim strSrc As String
Chapter 4 247

Creating and Downloading Waveform Files
Programming Examples
Dim numPoints As Integer

Dim FileHandle As Integer

Dim data As Byte

Dim iq_data() As Byte

Dim strFilename As String

strFilename = "C:\IQ_DataVB"

Const SAMPLES = 200 ' Number of sample PAIRS of I and Q integers for the waveform

AMPLITUDE = 32767 ' Scale the amplitude for full range of the signal generators

 ' I/Q modulator DAC

pi = 3.141592

Dim intIQ_Data(0 To 2 * SAMPLES - 1) 'Array for I and Q integers: 400

ReDim iq_data(0 To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for each integer value: 800

'Create an integer array of I/Q pairs

 For index = 0 To (SAMPLES - 1)

 intIQ_Data(2 * index) = CInt(AMPLITUDE * Sin(2 * pi * index / SAMPLES))

 intIQ_Data(2 * index + 1) = CInt(AMPLITUDE * Cos(2 * pi * index / SAMPLES))

 Next index

 'Convert each integer value to a hex string and then write into the iq_data byte array

 'MSB, LSB ordered

 For index = 0 To (2 * SAMPLES - 1)

 strSrc = Hex(intIQ_Data(index)) 'convert the integer to a hex value

 If Len(strSrc) <> 4 Then

 strSrc = String(4 - Len(strSrc), "0") & strSrc 'Convert to hex format i.e "800F

 End If 'Pad with 0's if needed to get 4

 'characters i.e '0' to "0000"
248 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
 hiHex = Mid$(strSrc, 1, 2) 'Get the first two hex values (MSB)

 loHex = Mid$(strSrc, 3, 2) 'Get the next two hex values (LSB)

 loByte = CByte("&H" & loHex) 'Convert to byte data type LSB

 hiByte = CByte("&H" & hiHex) 'Convert to byte data type MSB

 iq_data(2 * index) = hiByte 'MSB into first byte

 iq_data(2 * index + 1) = loByte 'LSB into second byte

 Next index

 'Now write the data to the file

FileHandle = FreeFile() 'Get a file number

numPoints = UBound(iq_data) 'Get the number of bytes in the file

Open strFilename For Binary Access Write As #FileHandle Len = numPoints + 1

On Error GoTo file_error

 For index = 0 To (numPoints)

 data = iq_data(index)

 Put #FileHandle, index + 1, data 'Write the I/Q data to the file

 Next index

Close #FileHandle

Call MsgBox("Data written to file " & strFilename, vbOKOnly, "Download")

Exit Sub
Chapter 4 249

Creating and Downloading Waveform Files
Programming Examples
file_error:

 MsgBox Err.Description

 Close #FileHandle

End Sub
250 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
Downloading I/Q Data

On the documentation CD, this programming example’s name is “Download_File_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, downloads the file created in
“Creating I/Q Data—Little Endian Order” on page 247 into non-volatile memory using a LAN connection.
To use GPIB, replace the instOpenString object declaration with “GPIB::19::INSTR”. To
download the data into volatile memory, change the instDestfile declaration to
“USER/BBG1/WAVEFORM/”.

NOTE The example program listed here uses the VISA COM I/O API, which includes the
WriteIEEEBlock method. This method eliminates the need to format the download
command with arbitrary block information such as defining number of bytes and byte
numbers. Refer to “SCPI Command Line Structure” on page 187 for more information.

This program also includes some error checking to alert you when problems arise while trying to download
files. This includes checking to see if the file exists.

'***

' Program Name: Download_File

' Program Description: This program uses Microsoft Visual Basic 6.0 and the Agilent

' VISA COM I/O Library to download a waveform file to the signal generator.

'

' The program downloads a file (the previously created ‘IQ_DataVB’ file) to the signal

' generator. Refer to the Programming Guide for information on binary

' data requirements for file downloads. The waveform data 'IQ_DataVB' is

' downloaded to the signal generator's non-volatile memory(NVWFM)

' " /USER/WAVEFORM/IQ_DataVB". For volatile memory(WFM1) download to the

' " /USER/BBG1/WAVEFORM/IQ_DataVB" directory.

'

' You must reference the Agilent VISA COM Resource Manager and VISA COM 1.0 Type

' Library in your Visual Basic project in the Project/References menu.

' The VISA COM 1.0 Type Library, corresponds to VISACOM.tlb and the Agilent

' VISA COM Resource Manager, corresponds to AgtRM.DLL.

' The VISA COM 488.2 Formatted I/O 1.0, corresponds to the BasicFormattedIO.dll

' Use a statement such as "Dim Instr As VisaComLib.FormattedIO488" to

' create the formatted I/O reference and use
Chapter 4 251

Creating and Downloading Waveform Files
Programming Examples
' "Set Instr = New VisaComLib.FormattedIO488" to create the actual object.

'**

' IMPORTANT: Use the TCPIP address of your signal generator in the rm.Open

' declaraion. If you are using the GPIB interface in your project use "GPIB::19::INSTR"

' in the rm.Open declaration.

'**

Private Sub Download_File()

' The following four lines declare IO objects and instantiate them.

Dim rm As VisaComLib.ResourceManager

Set rm = New AgilentRMLib.SRMCls

Dim SigGen As VisaComLib.FormattedIO488

Set SigGen = New VisaComLib.FormattedIO488

' NOTE: Use the IP address of your signal generator in the rm.Open declaration

Set SigGen.IO = rm.Open("TCPIP0::000.000.000.000")

Dim data As Byte

Dim iq_data() As Byte

Dim FileHandle As Integer

Dim numPoints As Integer

Dim index As Integer

Dim Header As String

Dim response As String

Dim hiByte As String

Dim loByte As String

Dim strFilename As String

strFilename = "C:\IQ_DataVB" ‘File Name and location on PC

 'Data will be saved to the signal generator’s NVWFM
‘/USER/WAVEFORM/IQ_DataVB directory.
252 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
FileHandle = FreeFile()

On Error GoTo errorhandler

With SigGen 'Set up the signal generator to accept a download

 .IO.Timeout = 5000 'Timeout 50 seconds

 .WriteString "*RST" 'Reset the signal generator.

End With

numPoints = (FileLen(strFilename)) 'Get number of bytes in the file: 800 bytes

ReDim iq_data(0 To numPoints - 1) 'Dimension the iq_data array to the

 'size of the IQ_DataVB file: 800 bytes

Open strFilename For Binary Access Read As #FileHandle 'Open the file for binary read

On Error GoTo file_error

For index = 0 To (numPoints - 1) 'Write the IQ_DataVB data to the iq_data array

 Get #FileHandle, index + 1, data '(index+1) is the record number

 iq_data(index) = data

Next index

 Close #FileHandle 'Close the file

'Write the command to the Header string. NOTE: syntax

 Header = "MEM:DATA ""/USER/WAVEFORM/IQ_DataVB"","

 'Now write the data to the signal generator's non-volatile memory (NVWFM)

 SigGen.WriteIEEEBlock Header, iq_data

 SigGen.WriteString "*OPC?" 'Wait for the operation to complete
Chapter 4 253

Creating and Downloading Waveform Files
Programming Examples
 response = SigGen.ReadString 'Signal generator reponse to the OPC? query

 Call MsgBox("Data downloaded to the signal generator", vbOKOnly, "Download")

 Exit Sub

errorhandler:

 MsgBox Err.Description, vbExclamation, "Error Occurred", Err.HelpFile, Err.HelpContext

Exit Sub

file_error:

 Call MsgBox(Err.Description, vbOKOnly) 'Display any error message

 Close #FileHandle

End Sub
254 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
HP Basic Programming Examples
This section contains the following programming examples:

• “Downloading Waveform Data Using HP BASIC for Windows®” on page 255

• “Downloading Waveform Data Using HP BASIC for UNIX” on page 258

• “Downloading E443xB Waveform Data Using HP BASIC for Windows” on page 261

• “Downloading E443xB Waveform Data Using HP Basic for UNIX” on page 263

Downloading Waveform Data Using HP BASIC for Windows®

On the documentation CD, this programming example’s name is “hpbasicWin.txt.”

The following program will download a waveform using HP Basic for Windows into volatile ARB memory.
The waveform generated by this program is the same as the default SINE_TEST_WFM waveform file
available in the signal generator’s waveform memory. This code is similar to the code shown for BASIC for
UNIX but there is a formatting difference in line 130 and line 140.

To download into non-volatile memory, replace line 190 with:

190 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in 2’s
compliment form and a marker file is associated with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The “K” instructs HP Basic to output the following numbers or strings in the default format.

10 ! RE-SAVE "BASIC_Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

 Windows and MS Windows are U.S registered trademarks of Microsoft Corporation.
Chapter 4 255

Creating and Downloading Waveform Files
Programming Examples
110 PRINT "Data Generated"

120 Nbytes=4*Num_points

130 ASSIGN @Esg TO 719

140 ASSIGN @Esgb TO 719;FORMAT MSB FIRST

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @Esg USING "#,K";":MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @Esg USING "#,K";Ndigits$

210 OUTPUT @Esg USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @Esgb;Int_array(*)

240 OUTPUT @Esg;END

250 ASSIGN @Esg TO *

260 ASSIGN @Esgb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.
256 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an I/O path to the signal generator using GPIB. 7 is the address of the GPIB card
in the computer, and 19 is the address of the signal generator. This I/O path is used to
send ASCII data to the signal generator.

140: Opens an I/O path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file,
data_file, that will receive the waveform data. The name, data_file, will appear
in the signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that ESGb is the binary I/O path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)
Chapter 4 257

Creating and Downloading Waveform Files
Programming Examples
Downloading Waveform Data Using HP BASIC for UNIX

On the documentation CD, this programming example’s name is “hpbasicUx.txt.”

The following program shows you how to download waveforms using HP Basic for UNIX. The code is
similar to that shown for HP BASIC for Windows, but there is a formatting difference in line 130 and line
140.

To download into non-volatile memory, replace line 190 with:

190 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in 2’s
compliment form and a marker file is associated with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The “K” instructs HP BASIC to output the following numbers or strings in the default format.

10 ! RE-SAVE "UNIX_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data generated "

120 Nbytes=4*Num_points

130 ASSIGN @Esg TO 719;FORMAT ON

140 ASSIGN @Esgb TO 719;FORMAT OFF

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @Esg USING "#,K";":MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @Esg USING "#,K";Ndigits$
258 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
210 OUTPUT @Esg USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @Esgb;Int_array(*)

240 WAIT 2

241 OUTPUT @Esg;END

250 ASSIGN @Esg TO *

260 ASSIGN @Esgb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an I/O path to the signal generator using GPIB. 7 is the address of the GPIB card
in the computer, and 19 is the address of the signal generator. This I/O path is used to
send ASCII data to the signal generator.

140: Opens an I/O path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.
Chapter 4 259

Creating and Downloading Waveform Files
Programming Examples
190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file,
data_file, that will receive the waveform data. The name, data_file, will appear
in the signal generator’s memory catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that ESGb is the binary I/O path.

240: Sends an End-of-Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)
260 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
Downloading E443xB Waveform Data Using HP BASIC for Windows

On the documentation CD, this programming example’s name is “hpbasicWin2.txt.”

The following program shows you how to download waveforms using HP Basic for Windows into volatile
ARB memory. This program is similar to the following program example as well as the previous examples.
The difference between BASIC for UNIX and BASIC for Windows is the way the formatting, for the most
significant bit (MSB) on lines 110 and 120, is handled.

To download into non-volatile ARB memory, replace line 80 with:

160 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBI:testfile"", #"

and replace line 130 with:

210 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBQ:testfile"", #"

First, the I waveform data is put into an array of integers called Iwfm_data and the Q waveform data is put
into an array of integers called Qwfm_data. The variable Nbytes is set to equal the number of bytes in the I
waveform data. This should be twice the number of integers in Iwfm_data, since an integer is 2 bytes.
Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The “K” instructs HP Basic to output the following numbers or strings in the default format.

10 ! RE-SAVE "ARB_IQ_Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)

40 DEG

50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)

70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)

80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719

120 !ASSIGN @Esgb TO 719;FORMAT MSB FIRST

130 Nbytes$=VAL$(Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",#"
Chapter 4 261

Creating and Downloading Waveform Files
Programming Examples
170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytes$

190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"

220 OUTPUT @Esg USING "#,K";Ndigits$

230 OUTPUT @Esg USING "#,K";Nbytes$

240 OUTPUT @Esgb;Qwfm_data(*)

250 OUTPUT @Esg;END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300: See the table on page 256 for program comments.
262 Chapter 4

Creating and Downloading Waveform Files
Programming Examples
Downloading E443xB Waveform Data Using HP Basic for UNIX

On the documentation CD, this programming example’s name is “hpbasicUx2.txt.”

The following program shows you how to download waveforms using HP BASIC for UNIX. It is similar to
the previous program example. The difference is the way the formatting for the most significant bit (MSB)
on lines is handled.

First, the I waveform data is put into an array of integers called Iwfm_data and the Q waveform data is put
into an array of integers called Qwfm_data. The variable Nbytes is set to equal the number of bytes in the
I waveform data. This should be twice the number of integers in Iwfm_data, since an integer is represented
2 bytes. Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the automatic
EOL (End of Line) output. This allows multiple output commands to be concatenated as if they were a
single output. The “K” instructs HP BASIC to output the following numbers or strings in the default format.

10 ! RE-SAVE "ARB_IQ_file"

20 Num_points=200

30 ALLOCATE INTEGER Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)

40 DEG

50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)

70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)

80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719;FORMAT ON

120 ASSIGN @Esgb TO 719;FORMAT OFF

130 Nbytes$=VAL$(Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",#"

170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytes$

190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"
Chapter 4 263

Creating and Downloading Waveform Files
Programming Examples
220 OUTPUT @Esg USING "#,K";Ndigits$

230 OUTPUT @Esg USING "#,K";Nbytes$

240 OUTPUT @Esgb;Qwfm_data(*)

250 OUTPUT @Esg;END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300 See the table on page 259 for program comments.
264 Chapter 4

Creating and Downloading Waveform Files
Troubleshooting Waveform Files
Troubleshooting Waveform Files

Symptom Possible Cause

ERROR 224, Text file busy

Attempting to download a waveform that has the same name as the
waveform currently being played by the signal generator.

To solve the problem, either change the name of the waveform being
downloaded or turn off the ARB.

ERROR 628, DAC over range The amplitude of the signal exceeds the DAC input range. The typical causes
are unforeseen overshoot (DAC values within range) or the input values
exceed the DAC range.

To solve the problem, scale or reduce the DAC input values. For more
information, see “DAC Input Values” on page 173.

ERROR 629, File format invalid The signal generator requires a minimum of 60 samples to build a waveform
and the same number of I and Q data points.

ERROR -321, Out of memory

There is not enough space in the ARB memory for the waveform file being
downloaded.

To solve the problem, either reduce the file size of the waveform file or
delete unnecessary files from ARB memory.

No RF Output The marker RF blanking function may be active. To check for and turn RF
blanking off, press Mode > Dual ARB > ARB Setup > Marker Utilities >
Marker Routing > Pulse/RF Blank > None. This problem occurs when the file
header contains unspecified settings and a previously played waveform used
the marker RF blanking function.

For more information on the marker functions, see the User’s Guide.

Undesired output signal Check for the following:

• The data was downloaded in little endian order. See “Little Endian and
Big Endian (Byte Order)” on page 171 for more information.

• The waveform contains an odd number of samples. An odd number of
samples can cause waveform discontinuity. See “Waveform Phase
Continuity” on page 181 for more information.
Chapter 4 265

Creating and Downloading Waveform Files
Troubleshooting Waveform Files
266 Chapter 4

5 Creating and Downloading User-Data Files

This chapter explains the requirements and process of downloading user-data and contains the following
sections:

• “User Bit/Binary File Data Downloads” on page 268

• “FIR Filter Coefficient Downloads” on page 279

• “Downloads Directly into Pattern RAM (PRAM)” on page 283

• “Save and Recall Instrument State Files” on page 289

• “Download User Flatness Corrections Using C++ and VISA” on page 302

• “Data Transfer Troubleshooting” on page 307
267

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
User Bit/Binary File Data Downloads

NOTE This feature is available only in E4438C ESG Vector Signal Generators with Option
001/601 or 002/602.

The signal generator accepts user file data downloads. The files can be in either binary or bit format, each
consisting of 8-bit bytes. Both file types are stored in the signal generator’s non-volatile memory.

• In binary format the data is in multiples of 8 bits; all 8 bits of a byte are taken as data and used.

• In bit format the number of bits in the file is known and the non-data bits in the last byte are discarded.

After downloading the files, they can be selected as the transmitting data source. This section contains
information on transferring user file data from a PC to the signal generator. It explains how to download user
files into the signal generator’s memory and modulate the carrier signal with those files.

Framed and Unframed Data Types
There are two modes that can be used: framed mode and pattern mode (unframed).

• In framed mode, user file data is inserted into the data fields of an existing or user-defined, custom
framed digital modulation format, such as DECT, PHS, or TETRA.

The signal generator’s firmware generates the required framing structure and inserts user file data into
the data field(s) of the selected format. For more information, see “User Files as Data Source for Framed
Transmission” on page 270.

NOTE Unlike pattern RAM (PRAM) downloads to memory, user files contain “data field”
information only. The control data bits required for files downloaded directly into PRAM
are not required for user file data.

• In pattern mode, the file is modulated as a continuous, unframed stream of data, according to the
modulation type, symbol rate, and filtering associated with the selected format.

When a user file is selected as the data source, the signal generator’s firmware loads each data bit into
waveform memory, and sets 31 additional control bits depending upon the operating mode, regardless of
whether framed or unframed transmission is selected. In this manner, user files are mapped into
waveform memory bit-by-bit; where each bit is represented by a 32-bit word.

If the bit rate exceeds 50 Mbps, the user data is written to memory one symbol per 32-bit word, rather
than one bit per 32-bit word. This is generally referred to as parallel mode.
268 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
Bit Memory and Binary Memory

User files can be downloaded to bit memory or binary memory. Bit memory accepts data in integer number
of bits, up to the maximum available memory. The data length in bytes for files downloaded into bit memory
is equal to the number of significant bits plus 7, divided by 8, then rounded down to the nearest integer plus
8 bytes for the file header. You must have enough bytes to contain the bits you specify. If the number of bits
is not a multiple of 8, the least significant bits of the last byte will be ignored.

Bit memory provides more versatility and is the preferred memory for user file downloads.

Binary memory requires data formatted in 8-bit bytes. Files stored or downloaded to binary memory are
converted to bit files prior to editing in the bit file editor. Afterward, these modified files from binary
memory are stored in bit memory as bit files.

Data Requirements

1. Data must be in binary format.

SCPI specifies the data in 8-bit bytes.

2. Bit length must be a multiple of the data-field length of the active format.

Also, the bit length of a user file must be a multiple of the data-field length of the active format in order
to completely fill the frame’s data field without leaving a remainder.

Remaining data is truncated by the signal generator’s firmware and is therefore not present in the
resulting waveform at the RF output.

3. Bit length must be a multiple of 8 (binary downloads only).

SCPI specifies data in 8-bit bytes, and the binary memory stores data in 8-bit bytes.
If the length (in bits) of the original data pattern is not a multiple of 8, you may need to:

• add additional bits to complete the ASCII character,
• replicate the data pattern without discontinuity until the total length is a multiple of 8 bits,
• truncate and discard bits until you reach a string length that is a multiple of 8, or
• use a bit file and download to bit memory instead.
Chapter 5 269

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
Data Limitations
Maximum selectable file sizes are directly proportional to the available memory space and the signal
generator’s pattern RAM (volatile memory) size. To determine the maximum user file size, you must
consider the following:

• framing overhead

• pattern RAM storage size (Option 001/601 = 800 kB, Option 002 = 3.2 MB, or Option 602 = 6.4 MB)

The maximum memory for bit and binary user data is less than the maximum memory for PRAM data.

• available memory

You may have to delete files from memory before downloading larger files. For more information on signal
generator memory, see “Waveform Memory” on page 184.

NOTE References to pattern RAM (PRAM) are for descriptive purposes only, relating to the
manner in which the memory is being used. PRAM and volatile waveform memory
(WFM1) actually utilize the same storage media.

Data Volatility
The signal generator provides two data storage areas: volatile waveform memory (WFM1) and non-volatile
memory (NVWFM). Data stored in volatile waveform memory cannot be recovered if it is overwritten or if
the power is cycled. Data stored in non-volatile memory, however, remains until you delete the file. The
Option 005 signal generator’s hard disk provides 5 GB of non-volatile storage. Signal generators without
Option 005 provide 15 MB of non-volatile storage.

User Files as Data Source for Framed Transmission
Specifying a user file as the data source for a framed transmission provides you with an easy method to
multiplex real data into internally generated TDMA framing. The user file will fill the data fields of the
active timeslot in the first frame, and continue to fill the same timeslot of successive frames as long as there
is more data in the file. This functionality allows a communications system designer to download and
modulate proprietary data sequences, specific PN sequences, or simulate multiframe transmission, such as
those specified by some mobile communications protocols. As the example in the following figure shows, a
GSM multiframe transmission requires 26 frames for speech.
270 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
Figure 5-1 GSM Multiframe Transmission

When a user file is selected as the data source for a framed transmission, the signal generator’s firmware
loads PRAM with the framing protocol of the active TDMA format. For all addresses corresponding to
active (on) timeslots, burst bits are set to 1 and data bits are set with the contents of the user file for the data
fields of the timeslot. Other bits are set according to the configuration selected. For inactive (off) timeslots,
burst control bits are set to 0, and data is “unspecified.” Pattern reset is set to 1 for the last byte in PRAM,
causing the pattern to repeat after the last byte is read.

NOTE The data in PRAM is static. Firmware writes to PRAM once for the configuration selected
and the hardware reads this data repeatedly. Firmware overwrites the volatile PRAM
memory to reflect the desired configuration only when the data source or mode (digital
communications format) is changed.

Take for example, transmitting a 228-bit user file for timeslot #1 (TS1) in a normal GSM transmission. Per
the standard, a GSM normal channel is 156.25-bits long, with two 57-bit data fields (114 bits total per
timeslot), and 42 bits for control or signalling purposes.

NOTE Compliant with the GSM standard, which specifies 156.25-bit timeslots, the signal
generator uses 156-bit timeslots and adds an extra guard bit every fourth timeslot.
Chapter 5 271

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
The 7 remaining timeslots in the GSM frame are off. The user file will completely fill timeslot #1 in two
consecutive frames, and will then repeat. See Figure 5-2.

Figure 5-2 Mapping User File Data to a Single Timeslot

For this protocol configuration, the signal generator’s firmware loads PRAM with the bits defined in the
following table.

Frame Timeslot PRAM Word
Offset

Data Bits Burst Bits Pattern Reset
Bit

1 0 0 -155 0/1 (don’t care) 0 (off) 0 (off)

1 1 (on) 156 - 311 set by GSM standard (42 bits) &
first 114 bits of user file

1 (on) 0

1 2 312 - 467 0/1 (don’t care) 0 0

1 3 468 - 624 0/1 (don’t care) 0 0

1 4 625 - 780 0/1 (don’t care) 0 0

1 5 781 - 936 0/1 (don’t care) 0 0

1 6 937 - 1092 0/1 (don’t care) 0 0

1 7 1093 - 1249 0/1 (don’t care) 0 0

2 0 1250 - 1405 0/1 (don’t care) 0 0

2 1 (on) 1406 - 1561 set by GSM standard (42 bits) &
remaining bits of user file

1 (on) 0

2 2 through 6 1562 - 2342 0/1 (don’t care) 0 0 (off)

2 7 2343 - 2499 0/1 (don’t care) 0 0 (1 in offset
2499 only)
272 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
Event 1 output is set to 0 or 1 depending on the sync out selection, which enables the Event 1 output at either
the beginning of the frame, beginning of a specific timeslot, or at all timeslots.

Because timeslots are configured and enabled within the signal generator, a user file can be individually
assigned to one or more timeslots. A timeslot cannot have more than one data source (PN sequence or user
file) specified for it. The amount of user file data that can be mapped into hardware memory depends on
both the amount of PRAM available on the baseband generator, and the number and size of each frame. The
amount of PRAM required for a framed transmission is calculated as follows:

PRAM storage required (measured in 32-bit words) =
size of normal GSM timeslot × timeslots per frame × speech multiframe(TCH) × superframe

size of normal GSM timeslot = 156.25 bits

timeslots per frame = 8 timeslots.

speech multiframe(TCH) = 26 frames

superframe = 51 speech multiframes

For example, to calculate the number of bytes to generate a superframe for GSM:

= 156.25 × 8 × 26 × 51

= 1,657,5000 32-bit words = 6,630,000 bytes.

Multiple User Files Selected as Data Sources for Different Timeslots
If two or more user files are selected for a framed transmission, the amount of PRAM required is determined
by the user file that generates the largest number of frames. In order to generate continuously repeating data
patterns, each user file must be long enough to completely fill an integer number of timeslots. In addition, all
user files must meet the “multiple of 8 bits” and “enough PRAM memory” requirements to be correctly
modulated.

For example, user file #1 contains 114 bits and fills the data fields of a normal GSM timeslot, and user
file #2 contains 148 bits for a custom GSM timeslot. In order to correctly transmit these data patterns as
continuously repeating user files without discontinuities, both data patterns must be repeated four times.
Therefore, user file #1 contains 456 bits, and user file 2 contains 592 bits. Each user file will then create
exactly four frames in pattern RAM.

When two or more user files generate different numbers of complete frames, the user files will repeat on
different cycles. All user files will restart when the user file that generates the largest number of frames
repeats. For example, user file #1 needs four frames to completely transmit its data, and user file #2 needs
only three. User file #2 will repeat after the third frame, and again when user file #1 repeats. See Figure 5-3.
If these were integer multiples of each other, both user files would be continuous, and user file #2 would
repeat after two frames.
Chapter 5 273

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
Figure 5-3 Repeating Different Length User Files

Downloading User File Data
This section includes information that explains how to download user file data. It includes data requirements
and limitations, preliminary setup, SCPI commands and sample command lines for both downloads to bit
memory and binary memory.

Data Requirements and Limitations Summary

1. Data must be binary.

2. Bit length must be a multiple of the data-field length of the active TDMA format.

3. User file size is limited by the available memory.

4. When designing user files, you must consider the signal generator’s PRAM storage size
(Option 001/601 = 800 kB, Option 002 = 3.2 MB, or Option 602 = 6.4 MB), framing overhead, and
available memory.

The maximum memory for bit and binary user data is less than the maximum memory for PRAM data.

5. For downloads to binary memory, bit length must be a multiple of 8; SCPI specifies the data in 8-bit
bytes.

No preliminary setup is required for user file downloads.

Bit Memory Downloads

Bit memory accepts data in any integer number of bits, up to the maximum available memory. The data
length in bytes for files downloaded to bit memory is equal to the number of significant bits plus 7, divided
by 8, then rounded down to the nearest integer plus 8 bytes for the file header. Each file has a 16-byte header
associated with it.
274 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
You must have enough bytes to contain the bits you specify. If the number of bits is not a multiple of 8, the
least significant bits of the last byte will be ignored.

For example, specifying 14 bits of a 16-bit string using the command
:MEMory:DATA:BIT "<file_name>",14,#12Qz results in the last 2 bits being ignored. See the
following figure.

Bit memory provides more versatility and is preferred for user file downloads.

SCPI Commands

Send the following command to download the user file data into the signal generator’s bit memory catalog.

:MEMory:DATA:BIT "<file_name>",<bit count>,<data block>

Example

:MEMory:DATA:BIT "<file_name>",16,#12Qz

file_name provides the user file name as it will appear in the signal generator’s bit memory catalog

16 states the number of bits to download

indicates the start of the data block

1 states the number of decimal digits that follows this number that defines the number of
data bytes in the data block

2 denotes the number of data bytes in the data block, which follows

Qz the ASCII representation of the 16 bits of data (data block) to be downloaded to the
signal generator

Querying the Waveform Data

Use the following SCPI command to query user file data from the bit memory catalog:

:MEMory:DATA:BIT? "<file_name>"

The output format is the same as the input format.

1010 0001 0111 1010 original user-defined data contains 2 bytes, 16 bits total

SCPI command sets bit count to 14; the last 2 bits are ignored

1010 0001 0111 1010
Chapter 5 275

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
Binary Memory Downloads

Binary memory requires data formatted in 8-bit bytes. Files stored or downloaded to binary memory are
converted to bit files prior to editing in the Bit File Editor. Afterward, these modified files from binary
memory are stored in bit memory as bit files. Bit memory is the preferred for user file downloads.

SCPI Commands

:MMEM:DATA "<file_name>",<data block>

Send this command to download the user file data into the signal generator’s binary memory. The variable
<file_name> denotes the name that will be associated with the downloaded user file stored in the signal
generator.

Sample Command Line

:MMEM:DATA "<file_name>",#ABC

<file_name> the name of the user file stored in the signal generator’s memory

indicates the start of the data block

A the number of decimal digits to follow in B

B a decimal number specifying the number of data bytes in C

C the binary user-file data

Example

:MMEM:DATA "<file_name>",#2151&2S?4g@07p!897

<file_name> provides the user file name as it will appear in the signal generator’s binary
memory catalog

indicates the start of the data block

2 defines the number of decimal digits to follow in “B”

15 denotes how many bytes of data are to follow

1&2S?4g@07p!897 the ASCII representation of the binary data that is downloaded to the signal
generator, however not all ASCII values are printable

Querying the Waveform Data

Use the following SCPI command line to query user file data from binary memory:

:MMEM:DATA? "file_name"

The output format is the same as the input format.
276 Chapter 5

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
Selecting Downloaded User Files as the Transmitted Data

Unframed Data

The following front panel key presses or remote commands will select the desired user file from the catalog
of user files as a continuous stream of unframed data for the active TDMA format or for a custom
modulation.

Via the front panel:

Via the remote interface:

The following commands activate the desired TDMA format:

[:SOURce]:RADio:<desired format>:DATA "BIT:<file_name>"

[:SOURce]:RADio:<desired format>[:STATe] On

The following commands activate the custom modulation format:

[:SOURce]:RADio:CUSTom:DATA "BIT:<file_name>"

[:SOURce]:RADio:CUSTom[:STATe] On

NOTE To select a user file from binary memory, send the same commands shown in the above
examples without BIT: preceding the file name. For example:

[:SOURce]:RADio:<desired format>:DATA "<file_name>"

Framed Data

The following front panel key presses or remote commands will select the desired user file from the catalog
of user files as a continuous stream of framed data for the active TDMA format.

1. For a TDMA format, press Mode > Real Time TDMA > desired format > Data > User File.

For custom modulation, press Mode > Custom > Real Time I/Q Baseband > Data > User File.

2. Highlight the desired file in the catalog of user files.

3. Press Select File > desired format Off On or Custom Off On to On.
Chapter 5 277

Creating and Downloading User-Data Files
User Bit/Binary File Data Downloads
Via the front panel:

Via the remote interface:

The following SCPI commands select and activate the user file as framed data for an NADC uplink
traffic channel in timeslot 1. The same command syntax is used for other data transmission formats.

[:SOURce]:RADio:NADC:DATA "BIT:<file_name>"

[:SOURce]:RADio:NADC[:STATe] On

The following commands load the data and activate the NADC modulation format:

[:SOURce]:RADio:NADC:SLOT1:UTCHannel:DATA "BIT:<file_name>"

[:SOURce]:RADio:NADC[:STATe] On

Modulating and Activating the Carrier
The following settings can be performed from the front panel or by using remote commands to modulate the
carrier and turn on the RF output.

Via the front panel:

Via the remote interface:

[:SOURce]:FREQuency:FIXed 2.5GHZ

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] -10.0DBM

:OUTPut:MODulation[:STATe] ON

:OUTPut[:STATe] ON

1. Press Mode > Real Time TDMA > desired format > Data Format Pattern Framed > Configure Timeslots >
Configure (current active timeslot) > Data > User File.

2. Highlight the desired file in the catalog of user files.

3. Press Select File

4. To activate the TDMA format, press Mode > Real Time TDMA > desired format > toggle the format on.

1. Set the carrier frequency to 2.5 GHz.

2. Set the carrier amplitude to −10.0 dBm.

3. Modulate the carrier.

4. Activate the RF output.
278 Chapter 5

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads
FIR Filter Coefficient Downloads

NOTE This feature is available only in E4438C ESG Vector Signal Generators with Option
001/601 or 002/602.

The signal generator accepts finite impulse response (FIR) filter coefficient downloads. After downloading
the coefficients, these user-defined FIR filter coefficient values can be selected as the filtering mechanism
for the active digital communications standard.

Data Requirements
There are two requirements for user-defined FIR filter coefficient files:

1. Data must be in ASCII format.

The signal generator processes FIR filter coefficients as floating point numbers.

2. Data must be in List format.

FIR filter coefficient data is processed as a list by the signal generator’s firmware. See “Sample
Command Line” on page 285.

Data Limitations
Filter lengths of up to 1024 taps (coefficients) are allowed. The oversample ratio (OSR) is the number of
filter taps per symbol. Oversample ratios from 1 through 32 are possible.

The maximum combination of OSR and symbols allowed is 32 symbols with an OSR of 32.

The Real Time I/Q Baseband FIR filter files are limited to 1024 taps, 64 symbols and a 16-times oversample
ratio. FIR filter files with more than 64 symbols cannot be used.

The ARB Waveform Generator FIR filter files are limited to 512 taps and 512 symbols.

The sampling period (∆t) is equal to the inverse of the sampling rate (FS). The sampling rate is equal to the
symbol rate multiplied by the oversample ratio. For example, the GSM symbol rate is 270.83 ksps. With an
oversample ratio of 4, the sampling rate is 1083.32 kHz and ∆t (inverse of FS) is 923.088 nsec.
Chapter 5 279

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads
Downloading FIR Filter Coefficient Data
The ESG stores the FIR files in the FIR (/USER/FIR) directory, which utilizes non-volatile memory. Use the
following SCPI command line to download FIR filter coefficients from the PC to the signal generator’s FIR

memory:

:MEMory:DATA:FIR "<file_name>",osr,coefficient{,coefficient}

Use the following SCPI command line to query list data from FIR memory:

:MEMory:DATA:FIR? "<file_name>"

Sample Command Line

The following SCPI command will download a typical set of FIR filter coefficient values and name the file
“FIR1”:

:MEMory:DATA:FIR "FIR1",4,0,0,0,0,0,0.000001,0.000012,0.000132,0.001101,
0.006743,0.030588,0.103676,0.265790,0.523849,0.809508,1,1,0.809508,0.523849,
0.265790,0.103676,0.030588,0.006743,0.001101,0.000132,0.000012,0.000001,0,
0,0,0,0

FIR1 assigns the name FIR1 to the associated OSR (over sample ratio) and coefficient values
(the file is then represented with this name in the FIR File catalog)

4 specifies the oversample ratio.

0,0,0,0,0,
0.000001,... represent FIR filter coefficients.

Selecting a Downloaded User FIR Filter as the Active Filter

FIR Filter Data for TDMA Format

The following front panel key presses or remote commands will select user FIR filter data as the active filter
for a TDMA modulation format.

Via the front panel:

1. Press Mode > Real Time TDMA > desired format > Modify Standard > Filter > Select > User FIR

2. Highlight the desired file in the catalog of FIR files.

3. Press Select File.

To activate the TDMA format press Mode > Real Time TDMA > desired format and toggle the format on.
280 Chapter 5

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads
Via the remote interface:

[:SOURce]:RADio:<desired format>:FILTer "<file_name>"

This command selects the user FIR filter, specified by the file name, as the active filter for the TDMA
modulation format. After selecting the file, activate the TDMA format with the following command:

[:SOURce]:RADio:<desired format>[:STATe] On

FIR Filter Data for Custom Modulation

The following front panel key presses or remote commands will select user FIR filter data as the active filter
for a custom modulation format.

Via the front panel:

1. Press Mode > Custom > Real Time IQ Baseband > Filter > Select > User FIR

2. Highlight the desired file in the catalog of FIR files.

3. Press Select File.

To activate the custom modulation, press Mode > Custom > Real Time IQ Baseband >
Custom Off On and toggle to on.

Via the remote interface:

[:SOURce]:RADio:CUSTom:FILTer "<file_name>"

This command selects the user FIR filter, specified by the file name, as the active filter for the custom
modulation format. After selecting the file, activate the TDMA format with the following command:

[:SOURce]:RADio:CUSTom[:STATe] On

FIR Filter Data for CDMA and W-CDMA Modulation

The following front panel key presses or remote commands will select user FIR filter data as the active filter
for a CDMA modulation format. The process is very similar for W-CDMA.

Via the front panel:

1. Press Mode > CDMA > Arb IS-95A > CDMA Define > Filter > Select > User FIR

2. Highlight the desired file in the catalog of FIR files.

3. Press Select File.

To activate the CDMA modulation, press Mode > CDMA > Arb IS-95A > CDMA Off On to On.
Chapter 5 281

Creating and Downloading User-Data Files
FIR Filter Coefficient Downloads
Via the remote interface:

[:SOURce]:RADio:<desired format>:ARB:FILTer "<file_name>"

This command selects the User FIR filter, specified by the file name, as the active filter for the CDMA or
W-CDMA modulation format. After selecting the file, activate the CDMA or W-CDMA format with the
following command:

[:SOURce]:RADio:<desired format>:ARB[:STATe] On

Modulating and Activating the Carrier

The following front panel key presses or remote commands will set the carrier frequency, power, turn on the
modulation, and turn on the RF output.

Via the front panel:

1. Press Frequency > 2.5 > GHz. Sets the signal generator frequency to 2.5 Ghz.

2. Press Amplitude > –10 > dBm. Sets the signal generator power to –10 dBm.

3. Press Mod On/Off until the display annunciator reads MOD ON.

4. Press RF On/Off until the display annunciator reads RF ON.

Via the remote interface:

Send the following SCPI commands to modulate and activate the carrier.

1. Set the carrier frequency to 2.5 Ghz:

[:SOURce]:FREQuency:FIXed 2.5GHZ

2. Set the carrier power to –10.0 dBm:

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] -10.0DBM

3. Activate the modulation:

:OUTPut:MODulation[:STATe] ON

4. Activate the RF output:

:OUTPut[:STATe] ON
282 Chapter 5

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)
Downloads Directly into Pattern RAM (PRAM)

NOTE This feature is available only in E4438C ESG Vector Signal Generators with Option
001/601 or 002/602.

Typically, the signal generator’s firmware generates the required data and framing structure and loads this
data into pattern RAM (PRAM). The data is read by the baseband generator, which in turn is input to the I/Q
modulator. The signal generator can also accept data downloads directly into PRAM from a computer.
Programs such as MATLAB or MathCad can generate data which can be downloaded directly into PRAM in
either a list format or a block format.

Direct downloads to PRAM provides complete control over bursting, which is especially helpful for
designing experimental or proprietary framing schemes.

This section contains information that will help you transfer user-generated data from a system controller to
the signal generator’s PRAM. It explains how to download data directly into PRAM and modulate the
carrier signal with the data.

The signal generator’s baseband generator assembly builds modulation schemes by reading data stored in
PRAM and constructing framing protocols according to the data patterns present. PRAM data can be
manipulated (types of protocols changed, standard protocols modified or customized, etc.) by the front panel
interface or by remote-command interface.

Data Limitations
Total (data bits plus control bits) download size limitations to PRAM (volatile memory) are 8 MB with
Option 001/601, 32 MB with Option 002, and 64 MB with Option 602. However the signal generator shares
this memory with other file types, so the actual available memory varies depending on the files currently
residing in volatile memory. Each downloaded byte for PRAM uses 4 bytes of storage.

NOTE References to pattern RAM (PRAM) are for descriptive purposes only, relating to the
manner in which the memory is being used. PRAM and volatile waveform memory
(WFM1) actually utilize the same storage media.

A data PRAM file containing 8 megabits of modulation data must contain another 56 megabits of control
information. A file of this size requires 8 MB of memory.

The signal generator provides two data storage areas: volatile waveform memory (WFM1) and non-volatile
memory (NVWFM). Data stored in volatile waveform memory cannot be recovered if it is overwritten or if
the power is cycled. Data stored in non-volatile memory, however, remains until you delete the file. The
Chapter 5 283

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)
Option 005 signal generator’s hard disk provides 5 GB of non-volatile storage. Signal generators without
Option 005 provide 15 MB of non-volatile storage. For more information on signal generator memory, see
“Waveform Memory” on page 184.

Downloading in List Format
Because of parsing, list data format downloads are significantly slower than block format downloads.

Data Requirements and Limitations Summary

1. Data must be 8-bit unsigned integers, from 0 to 255.

This requirement is necessary as list format downloads are parsed prior to being loaded into PRAM.

2. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

The signal generator processes data in 8-bit bytes. Each byte contains 1 bit of data field information, and
7 bits of control information associated with the data field bit.

Table 5-1 PRAM Data Byte

Bit Function Value Comments

0 Data 0/1
This bit is the data to be modulated. This bit is “unspecified” when burst (bit 2) is
set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 Set to 1 = RF on
Set to 0 = RF off
For non-bursted, non-TDMA systems, this bit is set to 1 for all memory locations,
leaving the RF output on continuously. For framed data, this bit is set to 1 for on
timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0

6 Event 1
Output

0/1 Setting this bit to 1 causes a level transition at the EVENT 1 BNC connector. This
can be used for many functions. For example, as a marker output to trigger external
hardware when the data pattern has restarted, or to create a data-synchronous pulse
train by toggling this bit in alternate addresses.

7 Pattern
Reset

0/1 Set to 0 = continue to next sequential memory address.
Set to 1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last address of PRAM. For the last address
(byte) of PRAM, it is set to 1 to restart the pattern.
284 Chapter 5

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)
Preliminary Setup

It is important to set up the digital communications format before downloading data. This allows the signal
generator to define the modulation format, filter, and data clock.

CAUTION Activating the digital communications format after the data has been downloaded to PRAM
may corrupt the downloaded data.

Via the front panel:

To set up the TDMA format, press Mode > desired format and toggle the format on.

To adjust symbol rate, filtering, or other parameters, press the appropriate softkey and adjust the value.

To set up the custom modulation format, press Mode > Custom and toggle the format on.

Via the remote interface:

For TDMA formats, send the following SCPI commands:

[:SOURce]:RADio:<desired format>[:STATe] ON
[:SOURce]:RADio:<desired format>:BURSt[:STATe] ON
[:SOURce]:BURSt:SOURce INT

For custom modulation, send:

[:SOURce]:RADio:CUSTOm[:STATe] ON

To adjust symbol rate, filtering, or other parameters, send the appropriate SCPI command.

SCPI Command to Download Data in List Format

:MEMory:DATA:PRAM:FILE:LIST "<file_name>",<uint8>[,<uint8>,<...>]

This command downloads the list-formatted data directly into PRAM. The variable <uint8> is any of the
valid 8-bit unsigned integer values between 0 and 255, as specified by Table 5-1 on page 284. Note that each
value corresponds to a unique byte/address in PRAM.

Sample Command Line

For example, to burst a FIX4 data pattern of “1100” five times, then turn the burst off for 32 data periods
(assuming a 1-bit/symbol modulation format), the command is:

:MEMory:DATA:PRAM:FILE:LIST "<newFile>",85,21,21,20,20,21,21,20,20,21,21,
20,20,21,21,20,20,21,21,20,20,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,
16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,144

newFile name of the PRAM file as it will appear in waveform memory
Chapter 5 285

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)
85 enables event 1 trigger signifying the beginning of the data pattern

21 signifies data = 1, burst = on (1)

20 signifies data = 0, burst = on (1)

16 signifies data = unspecified, burst = off (0)

144 signifies data = unspecified, burst = off (0), pattern repeat = on (1)

Downloading in Block Format

NOTE Because there is no parsing involved, block data format downloads are significantly faster
than list format downloads.

Data Requirements and Limitations Summary

1. Data must be in binary form.

This requirement is necessary as the baseband generator reads binary data from the data generator.

2. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

The signal generator processes data in 8-bit bytes. Each byte contains 1-bit of data field information, and
7-bits of control information associated with the data field bit. See Table 5-1 on page 284 for the
required data and control bits.

Because a waveform containing 16 megabits of data for subsequent modulation must also contain another
112 megabits of control information, a file this size (16 MB) requires a signal generator with Option 002
(32 MB) or 602 (64 MB). The largest amount of data (modulation data and control data) for a waveform in
an Option 001/601 signal generator is approximately 8 megabits, which provides only enough memory for
56 megabits of control data (64 megabits = 8 MB of memory).

Preliminary Setup

It is important to set up the digital communications format before downloading data. This allows the signal
generator to define the modulation format, filter, and data clock.

CAUTION Activating the digital communications format after the data has been downloaded to PRAM
may corrupt the downloaded data.
286 Chapter 5

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)
Via the front panel:

To set up the TDMA format, press Mode > desired format and toggle the format on.

To set up a custom modulation format, press Mode > Custom and toggle the format on.

To adjust symbol rate, filtering, or other parameters, press the appropriate softkey and adjust the value.

Via the remote interface:

For TDMA formats, send the following SCPI command:

[:SOURce]:RADio:<desired format>[:STATe] ON

For custom modulation, send:

[:SOURce]:RADio:CUSTom[:STATe] ON

To adjust symbol rate, filtering, or other parameters, send the appropriate SCPI command.

SCPI Command to Download Data in Block Format

:MEMory:DATA:PRAM:FILE:BLOCk "<filename>",<datablock>

This command downloads the block-formatted data directly into pattern RAM. In the following sample
command line, the datablock is designated as #ABC.

Sample Command Line

:MEMory:DATA:PRAM:FILE:BLOCk "<file_name>",#ABC

<file_name> name of the PRAM file as it will appear in waveform memory

indicates the start of the data block

A the number of decimal digits to follow in B

B a decimal number specifying the number of data bytes in C

C the binary user file data

Example 1

:MEMory:DATA:PRAM:FILE:BLOCk "<new_File>",#2161@2S@g4u&07!89*7

<new_File> name of the PRAM file as it will appear in waveform memory

indicates the start of the data block

2 defines the number of decimal digits to follow in “B”.

16 denotes how many bytes of data are to follow.
Chapter 5 287

Creating and Downloading User-Data Files
Downloads Directly into Pattern RAM (PRAM)
1@2S@g4u&07!89*7 the ASCII representation of the binary data that is downloaded to the signal
generator, however not all ASCII values are printable

Modulating and Activating the Carrier
The following section explains how to modulate the carrier with the data downloaded to PRAM, first from
the front panel interface, and then via remote SCPI commands.

Via the Front Panel

1. Set the carrier frequency to 2.5 Ghz (Frequency > 2.5 > GHz).

2. Set the carrier amplitude –10.0 dBm (Amplitude > –10 > dBm).

3. Turn modulation on (press Mod On/Off until the display annunciator reads MOD ON).

4. Activate the RF output (press RF On/Off until the display annunciator reads RF ON).

Via the Remote Interface

Send the following SCPI commands to modulate and activate the carrier.

1. Set the carrier frequency to 2.5 Ghz:

[:SOURce]:FREQuency:FIXed 2.5GHZ

2. Set the carrier power to –10.0 dBm:

[:SOURce]:POWer[:LEVel][:IMMediate][:AMPLitude] -10.0DBM

3. Activate the modulation:

:OUTPut:MODulation[:STATe] ON

4. Activate the RF output:

:OUTPut[:STATe] ON

Viewing the PRAM Waveform
After the waveform data is written to PRAM, the data pattern can be viewed using an oscilloscope. There is
approximately a 12-symbol delay between a state change in the burst bit and the corresponding effect at the
RF out. This delay varies with symbol rate and filter settings and requires compensation to advance the burst
bit in the downloaded PRAM file.
288 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
Save and Recall Instrument State Files
The signal generator can save instrument state settings to memory. An instrument state setting includes any
instrument state that does not survive a signal generator preset or power cycle such as frequency, amplitude,
attenuation, and other user–defined parameters. The instrument state settings are saved in memory and
organized into sequences and registers. There are 10 sequences with 100 registers per sequence available for
instrument state settings. These instrument state files are stored in the USER/STATE directory.

The save function does not store data such as arb formats, table entries, list sweep data and so forth. Use the
store commands or store softkey functions to store these data file types to the signal generator’s memory
catalog. The save function will save a reference to the data file name associated with the instrument state.

Before saving an instrument state that has a data file associated with it, store the data file. For example, if
you are editing a multitone arb format, store the multitone data to a file in the signal generator’s memory
catalog (multitone files are stored in the USER/MTONE directory). Then save the instrument state associated
with that data file. The settings for the signal generator such as frequency and amplitude and a reference to
the multitone file name will be saved in the selected sequence and register number. Refer to the E4428C/38C
ESG Signal Generators User’s Guide and E4428C/38C ESG Signal Generators Key Reference for more
information on the save and recall functions.

Save and Recall SCPI Commands

The following command sequence saves the current instrument state, using the *SAV command, in sequence
1, register 01. A comment is then added to the instrument state.

*SAV 01,1
:MEM:STAT:COMM 01,1, "Instrument state comment"

If there is a data file associated with the instrument state, there will be a file name reference saved along with
the instrument state. However, the data file must be stored in the signal generator’s memory catalog as the
*SAV command does not save data files. For more information on storing file data such as modulation
formats, arb setups, and table entries refer to the Storing Files to the Memory Catalog section in the
E4428C/38C ESG Signal Generators User’s Guide.

NOTE File names are referenced when an instrument state is saved, but a file will NOT be stored
with the save function.

The recall function will recall the saved instrument state. If there is a data file associated with the instrument
state, the file will be loaded along with the instrument state. The following command recalls the instrument
state saved in sequence 1, register 01.

*RCL 01,1
Chapter 5 289

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
Save and Recall Programming Example
The following programming example uses VISA and C# to save and recall signal generator instrument
states. Instruments states are saved to and recalled from your computer. This console program prompts the
user for an action: Backup State Files, Restore State Files, or Quit.

The Backup State Files choice reads the signal generator’s state files and stores it on your computer in the
same directory where the State_Files.exe program is located. The Restore State Files selection downloads
instrument state files, stored on your computer, to the signal generator’s State directory. The Quit selection
exists the program. The figure below shows the console interface and the results obtained after selecting the
Restore State Files operation.

The program uses VISA library functions. Refer to the Agilent VISA User’s Manual available on Agilent’s
website: http:\\www.agilent.com for more information on VISA functions.

The program listing for the State_Files.cs program is shown below. It is available on the CD–ROM in
the programming examples section under the same name.

C# and Microsoft .NET Framework

The Microsoft .NET Framework is a platform for creating Web Services and applications. There are three
components of the .NET Framework: the common language runtime, class libraries, and Active Server
Pages, called ASP.NET. Refer to the Microsoft website for more information on the .NET Framework.

The .NET Framework must be installed on your computer before you can run the State_Files program. The
framework can be downloaded from the Microsoft website and then installed on your computer.

Perform the following steps to run the State_Files program.

1. Copy the State_Files.cs file from the CD–ROM programming examples section to the directory
where the .NET Framework is installed.
290 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
2. Change the TCPIP0 address in the program from TCPIP0::000.000.000.000 to your ESG’s address.

3. Save the file using the .cs file name extension.

4. Run the Command Prompt program. Start > Run > "cmd.exe". Change the directory for the
command prompt to the location where the .NET Framework was installed.

5. Type csc.exe State_Files.cs at the command prompt and then press the Enter key on the
keyboard to run the program. The following figure shows the command prompt interface.

The State_Files.cs program is listed below. You can copy this program from the examples directory on the
ESG CD–ROM E4400–90501.

//**

// FileName: State_Files.cs

//

// This C# example code saves and recalls signal generator instrument states. The saved

// instrument state files are written to the local computer directory computer where the

// State_Files.exe is located. This is a console application that uses DLL importing to

// allow for calls to the unmanaged Agilent IO Library VISA DLL.

//

// The Agilent VISA library must be installed on your computer for this example to run.

// Important: Replace the visaOpenString with the IP address for your signal generator.

//

//**
Chapter 5 291

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
using System;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

using System.Collections;

using System.Text.RegularExpressions;

namespace State_Files

{

 class MainApp

 {

 // Replace the visaOpenString variable with your instrument's address.

 static public string visaOpenString = "TCPIP0::000.000.000.000"; //"GPIB0::19";

 //"TCPIP0::esg3::INSTR";

public const uint DEFAULT_TIMEOUT = 30 * 1000;// Instrument timeout 30 seconds.

public const int MAX_READ_DEVICE_STRING = 1024; // Buffer for string data reads.

public const int TRANSFER_BLOCK_SIZE = 4096;// Buffer for byte data.

 // The main entry point for the application.

 [STAThread]

static void Main(string[] args)

 {

 uint defaultRM;// Open the default VISA resource manager

if (VisaInterop.OpenDefaultRM(out defaultRM) == 0) // If no errors, proceed.

{

292 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
uint device;

// Open the specified VISA device: the signal generator

if (VisaInterop.Open(defaultRM, visaOpenString,VisaAccessMode.NoLock,

DEFAULT_TIMEOUT, out device) == 0)

// if no errors proceed.

{

bool quit = false;

while (!quit)// Get user input
{

Console.Write("1) Backup state files\n" +

"2) Restore state files\n" +

"3) Quit\nEnter 1,2,or 3. Your choice: ");

string choice = Console.ReadLine();
switch (choice)

{

case "1":
{

BackupInstrumentState(device); // Write instrument state
break; // files to the computer

}

 case "2":

{

RestoreInstrumentState(device); // Read instrument state

break;// files to the ESG

}

case "3":

{

quit = true;

break;

}

default:

{

break;

}

Chapter 5 293

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
}

}

VisaInterop.Close(device);// Close the device

}

else

{

Console.WriteLine("Unable to open " + visaOpenString);

 }

VisaInterop.Close(defaultRM); // Close the default resource manager

 }

else

{

 Console.WriteLine("Unable to open the VISA resource manager");

 }

 }

 /* This method restores all the sequence/register state files located in

the local directory (identified by a ".STA" file name extension)

to the signal generator.*/

static public void RestoreInstrumentState(uint device)

{

DirectoryInfo di = new DirectoryInfo(".");// Instantiate object class

FileInfo[] rgFiles = di.GetFiles("*.STA"); // Get the state files

foreach(FileInfo fi in rgFiles)

{

Match m = Regex.Match(fi.Name, @"^(\d)_(\d\d)");

if (m.Success)

{

string sequence = m.Groups[1].ToString();

string register = m.Groups[2].ToString();

Console.WriteLine("Restoring sequence #" + sequence +
294 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
 ", register #" + register);

/* Save the target instrument's current state to the specified sequence/

register pair. This ensures the index file has an entry for the specified

sequence/register pair. This workaround will not be necessary in future

revisions of firmware.*/

WriteDevice(device,"*SAV " + register + ", " + sequence + "\n",

 true); // << on SAME line!

// Overwrite the newly created state file with the state

// file that is being restored.

WriteDevice(device, "MEM:DATA \"/USER/STATE/" + m.ToString() + "\",",

 false); // << on SAME line!

WriteFileBlock(device, fi.Name);

WriteDevice(device, "\n", true);

}

}

 }

/* This method reads out all the sequence/register state files from the signal

generator and stores them in your computer's local directory with a ".STA"

extension */

static public void BackupInstrumentState(uint device)

{

// Get the memory catalog for the state directory

WriteDevice(device, "MEM:CAT:STAT?\n", false);

string catalog = ReadDevice(device);

/* Match the catalog listing for state files which are named

(sequence#)_(register#) e.g. 0_01, 1_01, 2_05*/

Match m = Regex.Match(catalog, "\"(\\d_\\d\\d),");

while (m.Success)
Chapter 5 295

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
{

// Grab the matched filename from the regular expresssion

string nextFile = m.Groups[1].ToString();

// Retrieve the file and store with a .STA extension

// in the current directory

Console.WriteLine("Retrieving state file: " + nextFile);

WriteDevice(device, "MEM:DATA? \"/USER/STATE/" + nextFile + "\"\n", true);

ReadFileBlock(device, nextFile + ".STA");

// Clear newline

ReadDevice(device);

// Advance to next match in catalog string

m = m.NextMatch();

}

}

/* This method writes an ASCII text string (SCPI command) to the signal generator.

If the bool "sendEnd" is true, the END line character will be sent at the

conclusion of the write. If "sendEnd is false the END line will not be sent.*/

static public void WriteDevice(uint device, string scpiCmd, bool sendEnd)

{

byte[] buf = Encoding.ASCII.GetBytes(scpiCmd);

if (!sendEnd) // Do not send the END line character

{

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 0);

}

uint retCount;

VisaInterop.Write(device, buf, (uint)buf.Length, out retCount);

if (!sendEnd) // Set the bool sendEnd true.

{

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 1);

}

296 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
}

// This method reads an ASCII string from the specified device

static public string ReadDevice(uint device)

{

string retValue = "";

byte[] buf = new byte[MAX_READ_DEVICE_STRING]; // 1024 bytes maximum read

uint retCount;

if (VisaInterop.Read(device, buf, (uint)buf.Length -1, out retCount) == 0)

{

retValue = Encoding.ASCII.GetString(buf, 0, (int)retCount);

}

return retValue;

}

/* The following method reads a SCPI definite block from the signal generator

and writes the contents to a file on your computer. The trailing

newline character is NOT consumed by the read.*/

static public void ReadFileBlock(uint device, string fileName)

{

// Create the new, empty data file.

FileStream fs = new FileStream(fileName, FileMode.Create);

// Read the definite block header: #{lengthDataLength}{dataLength}

uint retCount = 0;

byte[] buf = new byte[10];

VisaInterop.Read(device, buf, 2, out retCount);

VisaInterop.Read(device, buf, (uint)(buf[1]-'0'), out retCount);

uint fileSize = UInt32.Parse(Encoding.ASCII.GetString(buf, 0, (int)retCount));

// Read the file block from the signal generator

byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];

uint bytesRemaining = fileSize;
Chapter 5 297

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
while (bytesRemaining != 0)

{

uint bytesToRead = (bytesRemaining < TRANSFER_BLOCK_SIZE) ?

bytesRemaining : TRANSFER_BLOCK_SIZE;

VisaInterop.Read(device, readBuf, bytesToRead, out retCount);

fs.Write(readBuf, 0, (int)retCount);

bytesRemaining -= retCount;

}

// Done with file

fs.Close();

}

/* The following method writes the contents of the specified file to the

specified file in the form of a SCPI definite block. A newline is

NOT appended to the block and END is not sent at the conclusion of the

write.*/

static public void WriteFileBlock(uint device, string fileName)

{

// Make sure that the file exists, otherwise sends a null block

if (File.Exists(fileName))

{

FileStream fs = new FileStream(fileName, FileMode.Open);

// Send the definite block header: #{lengthDataLength}{dataLength}

string fileSize = fs.Length.ToString();

string fileSizeLength = fileSize.Length.ToString();

WriteDevice(device, "#" + fileSizeLength + fileSize, false);

// Don't set END at the end of writes

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 0);

// Write the file block to the signal generator

byte[] readBuf = new byte[TRANSFER_BLOCK_SIZE];
298 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
int numRead = 0;

uint retCount = 0;

while ((numRead = fs.Read(readBuf, 0, TRANSFER_BLOCK_SIZE)) != 0)

{

VisaInterop.Write(device, readBuf, (uint)numRead, out retCount);

}

// Go ahead and set END on writes

VisaInterop.SetAttribute(device, VisaAttribute.SendEndEnable, 1);

// Done with file

fs.Close();

}

else

{

// Send an empty definite block

WriteDevice(device, "#10", false);

}

}

}

// Declaration of VISA device access constants

public enum VisaAccessMode

 {

 NoLock = 0,

 ExclusiveLock = 1,

 SharedLock = 2,

 LoadConfig = 4

 }

// Declaration of VISA attribute constants

public enum VisaAttribute

 {

 SendEndEnable = 0x3FFF0016,
Chapter 5 299

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
 TimeoutValue = 0x3FFF001A

 }

// This class provides a way to call the unmanaged Agilent IO Library VISA C

// functions from the C# application

public class VisaInterop

 {

 [DllImport("agvisa32.dll", EntryPoint="viClear")]

 public static extern int Clear(uint session);

 [DllImport("agvisa32.dll", EntryPoint="viClose")]

 public static extern int Close(uint session);

 [DllImport("agvisa32.dll", EntryPoint="viFindNext")]

 public static extern int FindNext(uint findList, byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viFindRsrc")]

 public static extern int FindRsrc(

 uint session,

 string expr,

 out uint findList,

 out uint retCnt,

 byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viGetAttribute")]

public static extern int GetAttribute(uint vi, VisaAttribute attribute, out uint
attrState);

 [DllImport("agvisa32.dll", EntryPoint="viOpen")]

 public static extern int Open(

 uint session,
300 Chapter 5

Creating and Downloading User-Data Files
Save and Recall Instrument State Files
 string rsrcName,

 VisaAccessMode accessMode,

 uint timeout,

 out uint vi);

 [DllImport("agvisa32.dll", EntryPoint="viOpenDefaultRM")]

 public static extern int OpenDefaultRM(out uint session);

 [DllImport("agvisa32.dll", EntryPoint="viRead")]

 public static extern int Read(

 uint session,

 byte[] buf,

 uint count,

 out uint retCount);

 [DllImport("agvisa32.dll", EntryPoint="viSetAttribute")]

public static extern int SetAttribute(uint vi, VisaAttribute attribute, uint attrState);

 [DllImport("agvisa32.dll", EntryPoint="viStatusDesc")]

 public static extern int StatusDesc(uint vi, int status, byte[] desc);

 [DllImport("agvisa32.dll", EntryPoint="viWrite")]

 public static extern int Write(

 uint session,

 byte[] buf,

 uint count,

 out uint retCount);

 }

}

Chapter 5 301

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA
Download User Flatness Corrections Using C++ and VISA
This sample program uses C++ and the VISA libraries to download user–flatness correction values to the
signal generator. The program uses the LAN interface but can be adapted to use the GPIB interface by
changing the address string in the program.

You must include header files and resource files for library functions needed to run this program. Refer to
“Running C/C++ Programming Examples” on page 39 for more information.

The FlatCal program asks the user to enter a number of frequency and amplitude pairs. Frequency and
amplitude values are entered by via the keyboard and displayed on in the console interface. The values are
then downloaded to the signal generator and stored to a file named flatCal_data. The file is then loaded into
the signal generator’s memory catalog and corrections are turned on. The figure below shows the console
interface and several frequency and amplitude values. Use the same format, shown in the figure below, for
entering frequency and amplitude pairs (for example, 12ghz, 1.2db).

Figure 5-4 FlatCal Console Application

The program uses VISA library functions. The non–formatted viWrite VISA function is used to output data
to the signal generator. Refer to the Agilent VISA User’s Manual available on Agilent’s website:
http:\\www.agilent.com for more information on VISA functions.

The program listing for the FlatCal program is shown below. It is available on the CD–ROM in the
programming examples section as flatcal.cpp.
302 Chapter 5

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA
//**

// PROGRAM NAME:FlatCal.cpp

//

// PROGRAM DESCRIPTION:C++ Console application to input frequency and amplitude

// pairs and then download them to the signal generator.

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the LAN/TCPIP interface to download frequency and amplitude

// correction pairs to the signal generator. The program asks the operator to enter

// the number of pairs and allocates a pointer array listPairs[] sized to the number

// of pairs.The array is filled with frequency nextFreq[] and amplitude nextPower[]

// values entered from the keyboard.

//

//**

// IMPORTANT: Replace the 000.000.000.000 IP address in the instOpenString declaration

// in the code below with the IP address of your signal generator.

//**

#include <stdlib.h>

#include <stdio.h>

#include "visa.h"

#include <string.h>

// IMPORTANT:

// Configure the following IP address correctly before compiling and running

char* instOpenString ="TCPIP0::000.000.000.000::INSTR";//your PSG's IP address

const int MAX_STRING_LENGTH=20;//length of frequency and power strings

const int BUFFER_SIZE=256;//length of SCPI command string
Chapter 5 303

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA
int main(int argc, char* argv[])

{

 ViSession defaultRM, vi;

 ViStatus status = 0;

 status = viOpenDefaultRM(&defaultRM);//open the default resource manager

 //TO DO: Error handling here

 status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL, &vi);

 if (status)//if any errors then display the error and exit the program

 {

 fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

return -1;

 }

printf("Example Program to Download User Flatness Corrections\n\n");

 printf("Enter number of frequency and amplitude pairs: ");

 int num = 0;

 scanf("%d", &num);

 if (num > 0)

 {

 int lenArray=num*2;//length of the pairsList[] array. This array

//will hold the frequency and amplitude arrays

char** pairsList = new char* [lenArray]; //pointer array

for (int n=0; n < lenArray; n++)//initialize the pairsList array

//pairsList[n]=0;
304 Chapter 5

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA
 for (int i=0; i < num; i++)

 {

char* nextFreq = new char[MAX_STRING_LENGTH+1]; //frequency array

char* nextPower = new char[MAX_STRING_LENGTH+1];//amplitude array

//enter frequency and amplitude pairs i.e 10ghz .1db

printf("Enter Freq %d: ", i+1);

scanf("%s", nextFreq);

printf("Enter Power %d: ",i+1);

scanf("%s", nextPower);

pairsList[2*i] = nextFreq;//frequency

pairsList[2*i+1]=nextPower;//power correction

 }

unsigned char str[256];//buffer used to hold SCPI command

 //initialize the signal generator's user flatness table

 sprintf((char*)str,":corr:flat:pres\n"); //write to buffer

 viWrite(vi, str,strlen((char*str),0); //write to PSG

 char c = ',';//comma separator for SCPI command

 for (int j=0; j< num; j++) //download pairs to the PSG

{

sprintf((char*)str,":corr:flat:pair %s %c %s\n",pairsList[2*j], c,
pairsList[2*j+1]); // << on SAME line!

viWrite(vi, str,strlen((char*)str),0);

 }

 //store the downloaded correction pairs to PSG memory

 const char* fileName = "flatCal_data";//user flatness file name

 //write the SCPI command to the buffer str

 sprintf((char*)str, ":corr:flat:store \"%s\"\n", fileName);//write to buffer

 viWrite(vi,str,strlen((char*)str),0);//write the command to the PSG

 printf("\nFlatness Data saved to file : %s\n\n", fileName);

Chapter 5 305

Creating and Downloading User-Data Files
Download User Flatness Corrections Using C++ and VISA
 //load corrections

 sprintf((char*)str,":corr:flat:load \"%s\"\n", fileName); //write to buffer

 viWrite(vi,str,strlen((char*)str),0); //write command to the PSG

 //turn on corrections

 sprintf((char*)str, ":corr on\n");

 viWrite(vi,str,strlen((char*)str),0");

 printf("\nFlatness Corrections Enabled\n\n");

for (int k=0; k< lenArray; k++)

{

delete [] pairsList[k];//free up memory

}

delete [] pairsList;//free up memory

 }

 viClose(vi);//close the sessions

 viClose(defaultRM);

 return 0;

}

306 Chapter 5

Creating and Downloading User-Data Files
Data Transfer Troubleshooting
Data Transfer Troubleshooting

NOTE This feature is available only in E4438C ESG Vector Signal Generators with Option
001/601 or 002/602.

This section is divided by the following data transfer method:

“User File Download Problems” on page 307

“User FIR Filter Coefficient File Download Problems” on page 309

“Direct PRAM Download Problems” on page 310

Each section contains the following troubleshooting information:

• a list of symptoms and possible causes of typical problems encountered while downloading data to the
signal generator

• reminders regarding special considerations, file requirements, and data limitations

• tips on creating data, transferring data, data application and memory usage

User File Download Problems

Table 5-2 User FIR File Download Trouble - Symptoms and Causes

Symptom Possible Cause

No data modulated

Not enough data to fill a single timeslot.

If a user file does not completely fill a single timeslot, the firmware will not load any data
into the timeslot. For example, if a timeslot’s data field should contain 114 bits, and only
100 bits are provided in the user file, no data will be loaded into the data field of the
timeslot. Therefore, no data will be detected at the RF output.

At RF output,
some data modulated,
some data missing

Data does not completely fill an integer number of timeslots.

If a user file fills the data fields of more than one timeslot in a continuously repeating
framed transmission, the user file will be restarted after the last timeslot containing
completely filled data fields. For example, if the user file contains enough data to fill the
data fields of 3.5 timeslots, firmware will load 3 timeslots with data and restart the user
file after the third timeslot. The last 0.5 timeslot worth of data will never be modulated.
Chapter 5 307

Creating and Downloading User-Data Files
Data Transfer Troubleshooting
Data Requirement Reminders

To avoid user-file data download problems, the following conditions must be met:

1. The user file selected must entirely fill the data field of each timeslot.

2. For binary memory downloads, the user file must be a multiple of 8 bits, so that it can be represented in
ASCII characters.

3. Available PRAM must be large enough to support both the data field bits and the framing bits.

Requirement for Continuous User File Data Transmission

“Full Data Field” Requirements

If a user file does not completely fill a single timeslot, the firmware does not load any data into that timeslot.
For example, if a timeslot’s data field should contain 114 bits, and only 100 bits are provided in the user file,
no data is loaded into the timeslot data field, and no data is transmitted at the RF output.

To solve this problem, add bits to the user file until it completely fills the data field of the active protocol.

“Integer Number of Timeslots” Requirement for Multiple-Timeslots

If a user file fills the data fields of more than one timeslot in a continuously repeating framed transmission,
the user file is restarted after the last timeslot containing completely filled data fields. For example, if the
user file contains enough data to fill the data fields of 3.5 timeslots, firmware loads 3 timeslots with data and
restart the user file after the third timeslot. The last 0.5 timeslot worth of data is never modulated.

To solve this problem, add or subtract bits from the user file until it completely fills an integer number of
timeslots

“Multiple-of-8-Bits” Requirement

For downloads to binary memory, user file data must be downloaded in multiples of 8 bits, since SCPI
specifies data in 8-bit bytes. Therefore, if the original data pattern’s length is not a multiple of 8, you may
need to:

• Add additional bits to complete the ASCII character

• replicate the data pattern to generate a continuously repeating pattern with no discontinuity

• truncate the remaining bits

NOTE The “multiple-of-8-bits” data length requirement (for binary memory downloads) is in
addition to the requirement of completely filling the data field of an integer number of
timeslots.
308 Chapter 5

Creating and Downloading User-Data Files
Data Transfer Troubleshooting
Using Externally Generated, Real-Time Data for Large Files

The data fields absolutely must be continuous data streams, and the size of the data exceeds the available
PRAM, real-time data and synchronization can be supplied by an external data source to the front-panel
DATA, DATA CLOCK, and SYMBOL SYNC connectors. This data can be continuously transmitted, or can
be framed by supplying a data-synchronous burst pulse to the EXT1 INPUT connector on the front panel.
Additionally, the external data can be multiplexed into internally generated framing

User FIR Filter Coefficient File Download Problems

Data Requirement Reminders

To avoid user FIR filter coefficient data download problems, the following conditions must be met:

1. Data must be in ASCII format.

2. Downloads must be in list format.

3. Filters containing more symbols than the hardware allows (64 for Real Time and 512 for ARB) will not
be selectable for that configuration.

Table 5-3 User FIR File Download Trouble - Symptoms and Causes

Symptom Possible Cause

ERROR -321, Out of memory

There is not enough memory available for the FIR coefficient file
being downloaded.

To solve the problem, either reduce the file size of the FIR file or
delete unnecessary files from memory.

ERROR -223, Too much data

User FIR filter has too many symbols.

Real Time cannot use a filter that has more than 64 symbols (512
symbols maximum for ARB). You may have specified an incorrect
oversample ratio in the filter table editor.
Chapter 5 309

Creating and Downloading User-Data Files
Data Transfer Troubleshooting
Direct PRAM Download Problems

Data Requirement Reminders

To avoid direct-download-to-PRAM problems, the following conditions must be met:

1. The data must be in binary form.

2. For every bit of modulation data (bit 0), you must provide 7 bits of control information (bits 1-7).

Table 5-4 Direct-to-PRAM Download Trouble - Symptoms and Causes

Symptom Possible Cause

The transmitted pattern is
interspersed with random, unwanted
data.

Pattern reset bit not set.

Insure that the pattern reset bit (bit 7, value 128) is set on the last byte of your
downloaded data.

ERROR -223, Too much data

PRAM download exceeds the size of PRAM memory.

Either use a smaller pattern or get more memory by ordering the appropriate
hardware option.

Table 5-5 PRAM Byte Information

Bit Function Value Comments

0 Data 0/1 This bit is the data to be modulated. This bit is “unspecified” when burst
(bit 2) is set to 0.

1 Reserved 0 Always 0

2 Burst 0/1 Set to 1 = RF on
Set to 0 = RF off
For non-bursted, non-TDMA systems, this bit is set to 1 for all memory
locations, leaving the RF output on continuously. For framed data, this
bit is set to 1 for on timeslots and 0 for off timeslots.

3 Reserved 0 Always 0

4 Reserved 1 Always 1

5 Reserved 0 Always 0
310 Chapter 5

Creating and Downloading User-Data Files
Data Transfer Troubleshooting
6 Event 1 Output 0/1 Setting this bit to 1 causes a level transition at the EVENT 1 BNC
connector. This can be used for many functions. For example, as a
marker output to trigger external hardware when the data pattern has
restarted, or to create a data-synchronous pulse train by toggling this bit
in alternate addresses.

7 Pattern Reset 0/1 Set to 0 = continue to next sequential memory address.
Set to 1 = end of memory and restart memory playback.
This bit is set to 0 for all bytes except the last address of PRAM. For the
last address (byte) of PRAM, it is set to 1 to restart the pattern.

Table 5-5 PRAM Byte Information

Bit Function Value Comments
Chapter 5 311

Creating and Downloading User-Data Files
Data Transfer Troubleshooting
312 Chapter 5

Index

Symbols
.NET framework, 289

Numerics
2’s complement data format, 176

A
abort function, 11
add device, 5
address

GPIB address, 9
IP address, 16

Agilent
BASIC, 6, 43
SICL, 42
VISA, 9, 16, 28, 42

Agilent BASIC, 6, 43
Agilent IO Libraries, 3, 4
Agilent IO Libraries Suite, 3
Agilent Signal Studio, 210
Agilent Signal Studio Toolkit, 168
Agilent VISA, 9, 16, 28, 42
Agilent VISA COM Resource Manager 1.0, 40
ARB waveform file downloads

data requirements, 168
download utilities, 168, 210
playing downloaded waveforms, 207

ASCII, 14

B
Baseband Studio for Waveform Capture and

Playback, 182
BASIC

ABORT, 11
CLEAR, 13
ENTER, 14
LOCAL, 13
LOCAL LOCKOUT, 12
OUTPUT, 14
REMOTE, 11

big endian and little endian (byte order), 171
changing byte order, 172
interleaving and byte swapping, 197

big-endian, 247

binary memory catalog user file downloads, 276
binary memory vs. bit memory, 269
bit memory catalog user file downloads, 274
bit memory vs. binary memory, 269
bit status, how and what to monitor, 130
bit values, 129
bits and bytes, 170
byte order

byte swapping, 172
changing byte order, 172
interleaving I/Q data, 197
little endian and big endian, 171

C
C#, 289, 290
C++ programming examples, 214
C/C++, 6

include files, 39
clear command, 13
clear function, 13
CLS command, 133
command prompt, 18, 115
commands

abort function, 11
clear function, 13
enter function, 14
local function, 13
local lockout function, 12
output function, 14
remote function, 11

computer interface, 3
condition registers

description, 138
connection expert, 3
connection wizard, 3
controller, 10
creating and downloading waveform files, 167
creating waveform data, 193

saving to a text file for review, 196
csc.exe, 289

D
DAC input values, 173
data encryption, 187
Index 313

Index

data format

E443xB signal generator, 211
data limitations

FIR filter downloads, 279
PRAM downloads, 283
user file downloads, 270

data questionable filters
See also filters
BERT transition, 165
calibration transition, 161
frequency transition, 155
modulation transition, 158
power transition, 152
transition, 149

data questionable groups
See also status groups
BERT status, 163
calibration status, 160
frequency status, 154
modulation status, 157
power status, 151
status, 147

data questionable registers
See also registers
BERT condition, 164
BERT event, 165
BERT event enable, 165
calibration condition, 161
calibration event, 161
calibration event enable, 162
condition, 148
event, 149
event enable, 150
frequency condition, 155
frequency event, 156
frequency event enable, 156
modulation condition, 158
modulation event, 159
modulation event enable, 159
power condition, 152
power event, 153
power event enable, 153

data requirements, 168
FIR filter downloads, 279
user file downloads, 269

data transfer, 3
data volatility

PRAM downloads, 283
user file downloads, 270

datablock, 287
decryption, 187
developing programs, 38, 39
DHCP, 17, 32
DNS, 18
DOS command prompt, 22
download

libraries, 9, 16
user flatness, 289
utilities

Agilent Signal Studio Toolkit, 168
differences, 210
IntuiLink for PSG/ESG Signal Generators, 168
PSG/ESG Download Assistant, 168

waveform data, 167, 200, 267
advanced programming languages, 203
commands, 186
E443xB signal generator files, 174, 211
encrypted files for extraction, 190
encrypted files for no extraction, 189
FIR filter coefficient data, 279
ftp procedures, 191
memory locations, 187
playing waveforms, 207
simulation software, 200
unencrypted files for extraction, 189
unencrypted files for no extraction, 188
user files, 268

downloading
C++, 230
using Visual Basic, 251
VISA, 230

E
E443xB files, 211, 235

downloading, 213
formatting, 174, 211
storing, 211

E443xB programming examples, 255
edit visa config, 5
EnableRemote, 12
Index314

Index

encryption, 186, 187

downloading for extraction, 190
downloading for no extraction, 189
extracting waveform data, 191

end-of-file indicator, 188
enter function, 14
error messages, 34
errors, 19, 34
ESE commands, 133
even number of samples, 180
event enable register, description, 138
event registers, description, 138
example programs, 214

C++, 214
E443xB files, 235, 255
HP Basic, 255
MATLAB, 243
Visual Basic, 247

examples
downloading with Visual Basic, 251
save and recall, 290
Telnet, 26

extract waveform data, 186, 189–191

F
files

decryption, 187
download utilities, 210
encryption, 186, 187
extraction commands and file paths, 188
header information, 178, 187
transfer methods, 187
transferring, 26
waveform structure, 178

filters
See also data questionable filters
See also transition filters
negative transition, description, 138
positive transition, description, 138

firmware status, monitoring, 130
flatness corrections, 302
ftp, 26, 187

commands for downloading and extracting files,
190–191

procedures for downloading files, 191

web server information, 32
web server procedure, 192

G
Getting Started Wizard, 10
GPIB, 3

address, 9
cables, 9
card installation, 7
configuration, 9
controller, 10
interface, 7
IO libraries, 9
listener, 10
on UNIX, 8
overview, 7
program examples, 42
SCPI commands, 10
talker, 10
verifying operation, 10

H
hardware status, monitoring, 130
hexadecimal data, 247
hostname, 16
HP Basic programming examples, 255
HyperTerminal, 30

I
I/Q data

creating with advanced programming languages,
194

encryption, 186, 187
interleaving, 176, 197

big endian and little endian, 197
byte swapping, 197

memory locations, 184, 198
saving to a text file for review, 196
scaling, 174
waveform structure, 180

iabort, 11
ibloc, 13
ibstop, 11
ibwrt, 14
Index 315

Index

iclear, 14
IEEE standard, 7
igpibllo, 12
include files, 302
input values, DAC, 173
instrument communication, 4
instrument state files, 289
instrument status, monitoring, 126
interactive io, 3
interface, 3
interface cards, 7
interleaving, See I/Q data, 176
IntuiLink for PSG/ESG Signal Generators, 172, 210
io config, 3, 4
IO Config program, 5
IO interface, 4
IO libraries, 2, 3, 7, 9, 10, 28
IP address, 16
iremote, 12

J
Java, example, 115

L
LabView, 6
LAN, 3

DHCP configuration, 17
end-of-file indicator, 188
establishing a connection, 201, 203
hostname, 16
interface, 3
IO libraries, 16
manual configuration, 17
overview, 16
program examples, 80
sockets, 80
sockets LAN, 16
Telnet, 22
verifying operation, 18
VXI-11, 16, 80

lan configuration, 32
languages, 38
libraries, 2, 3, 9, 10, 16, 28
list, error messages, 34

listener, 10
little endian and big endian, 171

changing byte order, 197
interleaving and byte swapping, 197

local echo telnet, 25
local function, 13
local lockout function, 12
LSB and MSB, 171
LSB/MSB, 247

M
manual operation, 11
marker file, 178, 187
MATLAB

download utility, 210
downloading data, 200

MATLAB programming examples, 243
memory

allocation, 185
defined, 184
locations, 184
non-volatile (NVWFM), 187
size, 185
volatile (WFM1), 187

Microsoft .NET Framework, 290
MSB and LSB, 171
MS-DOS command prompt, 18, 22

N
National Instruments

NI-488.2, 42
NI-488.2 include files, 39
VISA, 9, 16, 28, 42

negative transition filter, description, 138
net framework, 289
NI-488.2, 9, 16, 28

EnableRemote, 12
iblcr, 13
ibloc, 13
ibrd, 15
ibstop, 11
ibwrt, 14
SetRWLS, 12

non-volatile memory, 184, 187
Index316

Index

memory allocation, 185

O
OPC commands, 133
output

command, 14
function, 14

P
pattern RAM, 283
pc, 247
PCI-GPIB, 42
PERL

example, 114
personal computer, PC, 7
phase discontinuity, 181

avoiding, 182
Baseband Studio for Waveform Capture and

Playback, 182
samples, 183

phase distortion, 181
ping program, 18
polling method (status registers), 131
ports, 85
positive transition filter, description, 138
PRAM, 283
PRAM downloads

in block format, 286
preliminary setup, 286
sample commands line, 287
SCPI commands, 287

in list format, 284, 285
preliminary setup, 285
SCPI commands, 285

modulating and activating the carrier, 288
problems

PRAM downloads, 310
user file downloads, 307
user FIR filter downloads, 309

programming examples, 214
C#, 290
C++, 214
E443xB files, 235, 255
HP Basic, 255

MATLAB, 243
using GPIB, 42
using LAN, 80
using RS-232, 118
Visual Basic, 247, 251

programming languages, 38
byte swapping for little endian order, 197
C#, 40
C/C++, 39
creating waveform data, 193
downloading waveform data, 200
Java, 115
PERL, 114
Visual Basic, 40

PSG/ESG Download Assistant, 210

Q
queue, error, 34

R
recall states, 289
register system overview, 126
registers

See also data questionable registers
See also status registers
condition, description, 138
in status groups (descriptions), 138
overall system, 127, 128
standard event status, 140
standard event status enable, 140
standard operation condition, 142, 145
standard operation event, 143, 146
standard operation event enable, 143, 146
status byte, 136

remote
annunciator, 118
function, 11

remote interface, 2
GPIB, 8
RS-232, 28

requirements, waveform data, 168
RS-232, 3

address, 118
baud rate, 29
Index 317

Index

cable, 29
configuration, 29
echo, 29
format parameters, 31
interface, 29
IO libraries, 28
overview, 28
program examples, 118
settings, baud rate, 118
verifying operation, 30

S
sample command line, 285
samples

even number, 180
waveform, 180

save and recall, 289
scaling I/Q data, 174
SCPI, 6, 7, 32
SCPI commands, 10

command line structure, 187
download E443xB files, 213
encrypted files, 189, 190
end-of-file indicator, 188
extraction, 186, 188, 189, 190
IEEE 488.2 common commands for status

registers, 133
no extraction, 188, 189
playing downloaded waveforms, 207
PRAM downloads (block format), 287

preliminary setup, 287
sample command line, 287

PRAM downloads (list format), 285
preliminary setup, 285
sample command line, 285

PRAM downloads (modulating and activating the
carrier), 288

unencrypted files, 188, 189
user file downloads, 275, 276

querying the PRAM data, 275, 276
sample command line, 276

user FIR file downloads
sample command line, 280

SCPI error queue, 34
SCPI file transfer methods, 187

SCPI register model, 126
securewave directory, 187

downloading encrypted files, 190
extracting waveform data, 191

service request method
status registers, 131
using, 131

SetRWLS, 12
SICL, 9, 16, 28, 42

iabort, 11
iclear, 14
igpibllo, 12
iprintf, 14
iremote, 12
iscanf, 15

signal generator
monitoring status, 126

Signal Studio Toolkit, 168, 210
simulation software, 200
sockets

example, 85, 88
Java, 115
LAN, 16, 80, 85
PERL, 114
UNIX, 85
Windows, 86

sockets LAN, 21
software libraries, IO, 3
SRE commands, 133
SRQ command, 131
SRQ method (status registers), 131
standard event

status enable register, 140
status group, 139
status register, 140

standard operation
condition register, 142, 145
event enable register, 143, 146
event register, 143, 146
status group, 141, 144
transition filters, 143, 145

state files, 289
status byte

group, 135
overall register system, 127, 128
Index318

Index

register, 136

status groups
See also data questionable groups
registers, 138
standard event, 139
standard operation, 141, 144
status byte, 135

status registers
See also registers
accessing information, 130
bit values, 129
hierarchy, 126
how and what to monitor, 130
in status groups, 138
overall system, 127, 128
programming, 125
SCPI commands, 133
SCPI model, 126
setting and querying, 133
standard event, 140
standard event status enable, 140
system overview, 126
using, 129

STB command, 133
system requirements, 38

T
talker, 10
TCP/IP, 4, 21, 32
Telnet

DOS command prompt, 22
example, 26
PC, 23
UNIX, 25, 26
using, 22
Windows 2000, 24

Toolkit, Signal Studio, 168, 210
transition filters

See also filters
description, 138
standard operation, 143, 145

troubleshooting
ping response errors, 19
PRAM downloads, 310
RS-232, 31

user file downloads, 307
user FIR filter downloads, 309

U
unencrypted files

downloading for extraction, 189
downloading for no extraction, 188

UNIX, 7
user file downloads, 274

modulating and activating the carrier, 278
selecting the user file as the data source, 277

user files
as data sources for frames transmissions, 270
in framed mode, 268
in pattern mode, 268
multiple user files as data sources, 273

user FIR file downloads, 280
selecting a downloaded user FIR file, 280

user flatness, 289, 302
user-data files, 267

creating, 267
downloading, 267

V
viPrintf, 14, 302
VISA, 9, 16, 28

include files, 39
library, 42, 247
scanf, 15
viClear, 13
viPrintf, 14
viTerminate, 11

VISA Assistant, 4, 10
VISA COM IO Library, 40
visa.h, 302
Visual Basic, 6

IDE, 40
references, 40

Visual Basic programming examples, 247
viTerminate, 11
viWrite, 302
volatile memory, 184, 187

memory allocation, 185
VXI-11, 20, 80
Index 319

Index

programming, 80
with SICL, 80
with VISA, 83

W
waveform data

2’s complement data format, 176
bits and bytes, 170
byte order, 172
byte swapping, 172
commands for downloading and extracting,

186–192
creating, 193
DAC input values, 173
data requirements, 168
encryption, 186–191
explained, 170
I and Q interleaving, 176
LSB and MSB, 171
saving to a text file for review, 196

waveform downloads
memory, 184

allocation, 185
size, 185
volatile and non-volatile, 184

samples, 180
structure, 180
troubleshooting files, 265
using advanced programming languages, 203
using download utilities, 210
using HP BASIC, 255–263
using simulation software, 200
with Visual Basic 6.0, 251

waveform generation
with Visual Basic 6.0, 247

web server, 32
Windows 2000, 24
Windows NT, 3, 4
WriteIEEEBlock, 251
Index320

	Title Page
	Table of Contents
	1 Getting Started
	Introduction to Remote Operation
	Interfaces
	I/O Libraries
	Agilent IO Libraries Suite
	Windows NT
	Programming Language

	Using GPIB
	1. Installing the GPIB Interface Card
	2. Selecting I/O Libraries for GPIB
	3. Setting Up the GPIB Interface
	4. Verifying GPIB Functionality
	GPIB Interface Terms
	GPIB Function

	Using LAN
	1. Selecting I/O Libraries for LAN
	2. Setting Up the LAN Interface
	3. Verifying LAN Functionality
	Using VXI-11
	Using Sockets LAN
	Using Telnet LAN
	Using FTP

	Using RS-232
	1. Selecting I/O Libraries for RS-232
	2. Setting Up the RS-232 Interface
	3. Verifying RS-232 Functionality
	Character Format Parameters
	If You Have Problems

	Communicating with the Signal Generator Using a Web Browser
	Error Messages
	Error Message File
	Error Message Types

	2 Programming Examples
	Using the Programming Examples
	Programming Examples Development Environment
	Running C/C++ Programming Examples
	Running Visual Basic 6.0
	Running C# Programming Examples

	GPIB Programming Examples
	Before Using the Examples
	Interface Check using Agilent BASIC
	Interface Check Using NI-488.2 and C++
	Interface Check using VISA and C
	Local Lockout Using Agilent BASIC
	Local Lockout Using NI-488.2 and C++
	Queries Using Agilent BASIC
	Queries Using NI-488.2 and C++
	Queries Using VISA and C
	Generating a CW Signal Using VISA and C
	Generating an Externally Applied AC-Coupled FM Signal Using VISA and C
	Generating an Internal AC-Coupled FM Signal Using VISA and C
	Generating a Step-Swept Signal Using VISA and C
	Generating a Swept Signal Using VISA and Visual C++
	Saving and Recalling States Using VISA and C
	Reading the Data Questionable Status Register Using VISA and C
	Reading the Service Request Interrupt (SRQ) Using VISA and C

	LAN Programming Examples
	Before Using the Examples
	VXI-11 Programing
	Sockets LAN Programming using C
	Sockets LAN Programming Using PERL
	Sockets LAN Programming Using Java

	RS-232 Programming Examples
	Before Using the Examples
	Interface Check Using Agilent BASIC
	Interface Check Using VISA and C
	Queries Using Agilent BASIC
	Queries Using VISA and C

	3 Programming the Status�Register�System
	Overview
	Status Register Bit Values
	Accessing Status Register Information
	Determining What to Monitor
	Deciding How to Monitor
	Status Register SCPI Commands

	Status Byte Group
	Status Byte Register
	Service Request Enable Register

	Status Groups
	Standard Event Status Group
	Standard Operation Status Group
	Baseband Operation Status Group
	Data Questionable Status Group
	Data Questionable Power Status Group
	Data Questionable Frequency Status Group
	Data Questionable Modulation Status Group
	Data Questionable Calibration Status Group
	Data Questionable BERT Status Group

	4 Creating and Downloading Waveform Files
	Overview
	Waveform Data Requirements

	Understanding Waveform Data
	Bits and Bytes
	LSB and MSB (Bit Order)
	Little Endian and Big Endian (Byte Order)
	Byte Swapping
	DAC Input Values
	2’s Complement Data Format
	I and Q Interleaving

	Waveform Structure
	File Header
	Marker File
	I/Q File
	Waveform

	Waveform Phase Continuity
	Phase Discontinuity, Distortion, and Spectral Regrowth
	Avoiding Phase Discontinuities

	Waveform Memory
	Memory Allocation
	Memory Size

	Commands for Downloading and Extracting Waveform Data
	Waveform Data Encryption
	File Transfer Methods
	SCPI Command Line Structure
	Commands and File Paths for Downloading and Extracting Waveform Data
	ftp:procedures for downloading files;download:waveform data:ftp procedures

	Creating Waveform Data
	Code Algorithm

	Downloading Waveform Data
	Using Simulation Software
	Using Advanced Programming Languages

	Loading, Playing, and Verifying a Downloaded Waveform
	Loading a File from Non-Volatile Memory
	Playing the Waveform
	Verifying the Waveform

	Using the Download Utilities
	Downloading E443xB Signal Generator Files
	E443xB Data Format
	Storage Locations for E443xB ARB files
	SCPI Commands

	Programming Examples
	C++ Programming Examples
	MATLAB Programming Example
	Visual Basic Programming Examples
	HP Basic

	Troubleshooting Waveform Files

	5 Creating and Downloading User-Data Files
	User Bit/Binary File Data Downloads
	Framed and Unframed Data Types
	Data Requirements
	Data Limitations
	Data Volatility
	User Files as Data Source for Framed Transmission
	Multiple User Files Selected as Data Sources for Different Timeslots
	Downloading User File Data
	Selecting Downloaded User Files as�the�Transmitted�Data
	Modulating and Activating the Carrier

	FIR Filter Coefficient Downloads
	Data Requirements
	Data Limitations
	Downloading FIR Filter Coefficient Data
	Selecting a Downloaded User FIR Filter as the Active�Filter

	Downloads Directly into Pattern RAM (PRAM)
	Data Limitations
	Downloading in List Format
	Downloading in Block Format
	Modulating and Activating the Carrier
	Viewing the PRAM Waveform

	Save and Recall Instrument State Files
	Save and Recall Programming Example

	Download User Flatness Corrections Using C++ and VISA
	Data Transfer Troubleshooting
	User File Download Problems
	User FIR Filter Coefficient File Download Problems
	Direct PRAM Download Problems

	Index

